
Copyright © 2014–2021 MIPI Alliance, Inc.
All rights reserved.

Architecture Overview
for Debug

White Paper

Version 1.3
19 March 2021

MIPI Board Approved for Public Distribution 21 April 2021

This is an informative document, not a MIPI Specification.
Various rights and obligations that apply solely to MIPI Specifications (as defined in the MIPI
Membership Agreement and MIPI Bylaws) including, but not limited to, patent license rights and
obligations, do not apply to this document.
The material contained herein is not a license, either expressly or impliedly, to any IPR owned or
controlled by any of the authors or developers of this material or MIPI. All materials contained herein are
protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of MIPI
Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, trade names, and
other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its
express prior written permission.
This document is subject to further editorial and technical development.
USB Type-CTM is a trademark of the USB Implementers Forum.

Architecture Overview for Debug Version 1.3
 19-Mar-2021

ii Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

NOTICE OF DISCLAIMER
The material contained herein is provided on an “AS IS” basis. To the maximum extent permitted by
applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers
of this material and MIPI Alliance Inc. (“MIPI”) hereby disclaim all other warranties and conditions, either
express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or
conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses,
of results, of workmanlike effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO
WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS
MATERIAL.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR MIPI BE LIABLE
TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES,
LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,
DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled
by any of the authors or developers of this material or MIPI. Any license to use this material is granted
separately from this document. This material is protected by copyright laws, and may not be reproduced,
republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all
related trademarks, service marks, tradenames, and other intellectual property are the exclusive property of
MIPI Alliance Inc. and cannot be used without its express prior written permission. The use or
implementation of this material may involve or require the use of intellectual property rights (“IPR”)
including (but not limited to) patents, patent applications, or copyrights owned by one or more parties,
whether or not members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI
require or request the disclosure of any IPR or claims of IPR as respects the contents of this material or
otherwise.
Without limiting the generality of the disclaimers stated above, users of this material are further notified
that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this
material; (b) does not monitor or enforce compliance with the contents of this material; and (c) does not
certify, test, or in any manner investigate products or services or any claims of compliance with MIPI
specifications or related material.
Questions pertaining to this material, or the terms or conditions of its provision, should be addressed to:

MIPI Alliance, Inc.
c/o IEEE-ISTO
445 Hoes Lane, Piscataway New Jersey 08854, United States
Attn: Managing Director

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. iii
 All rights reserved.

Contents
Figures ...v

Tables .. vii
Release History ... viii
1 Overview ..1

1.1 Scope ... 1
2 Terminology ...2

2.1 Definitions ... 2
2.2 Abbreviations ... 5
2.3 Acronyms .. 5
2.4 Use of Inclusive Language ... 7

3 References ..8

4 Debug System .. 11
4.1 System Framework .. 11
4.2 The MIPI Debug and Test System .. 13

5 Debug Physical Interfaces (DPI) ..15
5.1 Parallel Trace Interface (PTI) Specification .. 15

5.1.1 Trace and Debug Overview .. 15
5.1.2 Relationship to MIPI Debug Architecture .. 16
5.1.3 Trace Scenarios ... 17
5.1.4 Detailed Specification .. 21

5.2 High-speed Trace Interface (HTI) Specification ... 22
5.2.1 Overview .. 22
5.2.2 Relationship to the MIPI Debug Architecture .. 22
5.2.3 HTI Details ... 23
5.2.4 Detailed Specification .. 23

5.3 Debug Connector Recommendations ... 24
5.3.1 Dedicated Debug Connector Overview .. 24
5.3.2 Relationship to the MIPI Debug Architecture .. 24
5.3.3 Basic Debug Connectors .. 25
5.3.4 High-Speed Parallel Trace Connectors ... 25
5.3.5 Detailed Documentation ... 26

5.4 Narrow Interface for Debug and Test (NIDnT) Specification 27
5.4.1 Overview .. 27
5.4.2 Relationship to the MIPI Debug Architecture .. 27
5.4.3 NIDnT Details .. 28
5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes 29
5.4.5 Functional Interfaces that are NIDnT Candidates .. 30
5.4.6 Detailed Specification .. 30

Architecture Overview for Debug Version 1.3
 19-Mar-2021

iv Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

6 Debug Access and Control Subsystem (DACS) ..31
6.1 IEEE 1149.7 Debug and Test Interface Specification ... 31

6.1.1 Relationship to MIPI Debug Architecture .. 33
6.1.2 Detailed Specification .. 33

6.2 SneakPeek Specification .. 34
6.2.1 Relationship to MIPI Debug Architecture .. 34
6.2.2 Overview .. 34
6.2.3 Protocol Styles .. 37
6.2.4 Detailed Specifications ... 37

7 Debug Instrumentation and Visibility Subsystem (DIVS)39
7.1 Instrumentation and Visibility Subsystem Overview ... 39
7.2 System Trace Protocol (STP) Specification ... 39

7.2.1 Relationship to MIPI Debug Architecture .. 40
7.2.2 Protocol Overview .. 40
7.2.3 Detailed Specification .. 42

7.3 Trace Wrapper Protocol (TWP) Specification .. 43
7.3.1 Overview .. 43
7.3.2 Relationship to MIPI Debug Architecture .. 44
7.3.3 TWP Features ... 44
7.3.4 TWP Description .. 45
7.3.5 Layers ... 45
7.3.6 Detailed Specification .. 45

7.4 Gigabit Trace (GbT) .. 46
7.4.1 Summary... 46
7.4.2 Relationship to MIPI Debug Architecture .. 46
7.4.3 Gigabit Trace System Overview ... 47
7.4.4 Requirements Summary ... 48
7.4.5 Detailed Specification .. 48

7.5 STP and TWP in the DIVS .. 49
7.6 System Software Trace (SyS-T) Specification ... 51

7.6.1 Overview .. 51
7.6.2 Relationship to MIPI Debug Architecture .. 51
7.6.3 Usage .. 52
7.6.4 SyS-T Instrumentation Library ... 52
7.6.5 Detailed Specification .. 53

8 Debug Network Interfaces (DNI) ...55
8.1 Gigabit Debug (GbD) Specification.. 55

8.1.1 Overview .. 55
8.1.2 Relationship to MIPI Debug Architecture .. 57
8.1.3 Detailed Specifications ... 57

8.2 Debug for I3C ... 58
8.2.1 Overview .. 58
8.2.2 Relationship to MIPI Debug Architecture .. 59
8.2.3 Target System Implementation Overview .. 59
8.2.4 Detailed Specification .. 61

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. v
 All rights reserved.

Figures
Figure 1 MIPI Debug Generic System Framework .. 12

Figure 2 MIPI Debug Documentation and the Debug Architecture ... 13

Figure 3 Example MIPI System Overview .. 14

Figure 4 PTI in the MIPI Debug Architecture .. 16

Figure 5 Example System with PTI .. 17

Figure 6 PTI Layers within a System ... 18

Figure 7 Multi-Point PTI with 4-Pin Trace and Four Devices Sharing the Connector 20

Figure 8 Multi-Point PTI with 4-Pin Trace and Two Devices Sharing the Connector 21

Figure 9 HTI in the MIPI Debug Architecture ... 22

Figure 10 Connectors in the MIPI Debug Architecture .. 24

Figure 11 Basic Debug PCB (left) and Cable End Connector (34-pin Samtec FTSH) 25

Figure 12 Recommended Samtec QSH/QTH Connector ... 25

Figure 13 NIDnT in the MIPI Debug Architecture .. 27

Figure 14 Example of System with a Dedicated Debug Interface.. 28

Figure 15 Example of System with NIDnT Capability .. 29

Figure 16 DTS to TS Connectivity ... 32

Figure 17 IEEE 1149.7 in the MIPI Debug Architecture ... 33

Figure 18 SneakPeek in the MIPI Debug Architecture .. 34

Figure 19 Overview of SneakPeek System .. 35

Figure 20 SneakPeek Protocol and Network Stacks in DTS and TS ... 36

Figure 21 STP in the MIPI Debug Architecture ... 40

Figure 22 Conceptual Hierarchy of STP Major Sources and Channels ... 41

Figure 23 STM in a Target System ... 42

Figure 24 Example STP Packet Sequence .. 42

Figure 25 TWP in the MIPI Debug Architecture .. 44

Figure 26 Example Use Cases for Layers T1, T2 and T3 ... 45

Figure 27 Gigabit Trace and the MIPI Debug Architecture ... 46

Figure 28 Typical GbT Configuration and Data Flow (TS) ... 47

Figure 29 Typical GbT Configuration and Data Flow (DTC and DTS) ... 48

Figure 30 Example Trace Architecture ... 50

Figure 31 SyS-T in the MIPI Debug Architecture .. 51

Architecture Overview for Debug Version 1.3
 19-Mar-2021

vi Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Figure 32 SyS-T Instances in a Target System ... 52

Figure 33 Gigabit Debug Functional Block Diagram .. 55

Figure 34 GbD in a Multiple-Node Network ... 56

Figure 35 Gigabit Debug and the MIPI Architecture ... 57

Figure 36 Debug for I3C in the MIPI Debug Architecture ... 59

Figure 37 Debug for I3C Functional Block Diagram ... 60

Figure 38 Example Target System with Multiple Network Adaptors... 61

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. vii
 All rights reserved.

Tables
Table 1 Summary of Test/Debug Capabilities Supported by NIDnT ... 30

Table 2 Comparison of SneakPeek Protocol Styles .. 37

Architecture Overview for Debug Version 1.3
 19-Mar-2021

viii Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Release History
Date Version Description

14 February 2014 v1.0 Board approved release

29 September 2016 v1.1 Board approved release

29 August 2018 v1.2 Board approved release

19 March 2021 v1.3 Board approved release

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 1
 All rights reserved.

1 Overview

1.1 Scope
Recent technological developments have resulted in a quantum leap in the complexity of SoCs. Systems 1

that were formerly deployed on one or more PCBs are now being instantiated as single discrete devices. 2

While this trend is in general a boon to manufacturers and consumers of various systems, it has greatly 3

increased the complexity of system debug and optimization. Signals and interfaces that used to be visible at 4

test points on a PCB are now deeply embedded inside a SoC. The use of tried and true methods of probing 5

buses and signals with dedicated Debug and Test equipment is now virtually impossible. 6

This increase in debug complexity is being addressed by IP vendors, SoC developers, OEMs and tools 7

vendors. New technologies are being deployed that provide the visibility required in these complex and 8

deeply embedded designs. In order to maximize the utility and efficiency of debug, converging on common 9

interfaces and protocols used by these new technologies is essential. 10

To meet this need, the MIPI Debug Working Group (Debug WG) are developing a portfolio of standards 11

and other documents that address the particular needs of debug. Some of the areas of focus are listed below. 12

• Minimizing the pin cost and increasing the performance of the basic debug interface 13

• Increasing the bandwidth, capability and reliability of the high-performance interfaces used to 14

export high bandwidth, unidirectional debug data (e.g., processor trace data) to the debug tools 15

• Deploying debug connectors that are physically robust and have the performance required for the 16

high bandwidth demands of modern debug technologies 17

• Developing generic trace protocols that allow many different on chip trace sources to share a 18

single trace data flow to the debug tools 19

• Maximizing debug visibility in fielded systems by reusing some of the functional 20

interfaces/connectors for debug 21

• Utilizing the new high bandwidth functional interfaces being deployed on various systems as a 22

transport for debug 23

This document provides an overview of the efforts to address these goals and provides summaries of the 24

documents that address them in detail. 25

Architecture Overview for Debug Version 1.3
 19-Mar-2021

2 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

2 Terminology

2.1 Definitions
1149.1: Short for IEEE 1149.1. See [IEEE01]. 26

1149.7: Short for IEEE 1149.7. See [IEEE02]. 27

Application Function: All functions of the TS other than Debug and Test Functions. 28

Application Processor: A programmable CPU (or CPU-based system on a chip (SoC) which may include 29

other programmable processors such as DSPs), primarily, but not necessarily exclusively, programmed to 30

coordinate the application processing and user interface processing. 31

Application Software: Used here to mean the target resident code that runs on the target processor. This 32

includes the operating system as well as the program(s) running with the OS. 33

Basic Debug Communication: Debug communication needed through an 1149.1 (or equivalent) port only 34

to manage basic debug communication functions such as run control, hardware breakpoints and 35

watchpoints, and examining system state. 36

Boundary Scan: A production test mechanism where interconnects between chips or logic blocks in an 37

SoC are verified by forcing known test patterns into the system via a serial scan interface, activating a test 38

mode, and then scanning out the resultant values to test against expected results. 39

Built-in Self-Test (BIST): On-chip logic function that verifies all or a portion of the internal functionality 40

of a SoC during production tests. BIST logic requires minimal interaction with external test infrastructures 41

and speeds up verification of complex SoCs. 42

Debug: To detect, trace, and eliminate SW mistakes. Also used to get an insight into an embedded 43

processor system for performance measurements and debug of system level hardware. Used in this 44

document in an inclusive way that encompasses stop/start/break/step debugging as well as non-halting 45

methods such as trace. 46

Debug Access and Control Subsystem (DACS): The subsystem that provides a path for the DTS to obtain 47

direct access to application visible system resources (registers and memory). 48

Debug and Test Controller (DTC): The hardware system that is responsible for managing 49

communications with a system being debugged (the Target System). 50

Debug and Test Function: A block of on-chip logic that carries out a debug function such as run control, 51

providing debug access to system resources, Processor Trace, or test capability. 52

Debug and Test Interface (DTI): The interface between the Debug and Test System (DTS) and the Target 53

System (TS). The interface enables access to basic debug communication, the trace port, streaming data 54

(input and output), and other debug or test capabilities. 55

Debug and Test System (DTS): The combined HW and SW system that provides a system developer 56

debug visibility and control when connected to a Target System. The system incorporates: 57

• A host PC, workstation or other processing system, running the debug or test software, controlling 58

the Debug and Test Controller. See also: Debug and Test Controller (DTC). 59

• Debugger: The debugger software, part of the Debug and Test System. It interacts with the Debug 60

and Test Controller and provides the (graphical) user interface for operating the Debug and Test 61

Controller (like commanding single step, setting breakpoints, memory display/modify, trace 62

reconstruction, etc.) 63

Debug and Test Target (DTT): A component in the Target System that implements one or more Debug 64

and Test Functions. The interfaces to Debug and Test Targets, where different from the DTI, are not within 65

the scope of this specification. Examples include the debug control module on a CPU, debug interface to 66

system memory, or the configuration interface to an on-chip trace module. 67

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 3
 All rights reserved.

Debug Instrumentation and Visibility Subsystem (DIVS): The subsystem that provides communication 68

and storage of data generated by debug instrumentation modules (like processor and system trace) in the 69

target system. 70

Debug Physical Interfaces (DPI): The chip and board level interfaces used to connect the DTC to the on-71

chip debug functions. 72

Double Data Rate (DDR): A parallel data interface that provides valid data on both the rising and falling 73

edge of the interface clock. 74

Electrical: The definition of: 75

• Signal voltage levels, current drain and drive strength on inputs, outputs, and bi-directional pins 76

• Rise and fall times and expected loads for device pins. 77

Function Assignment: The mapping of functions to signals (and thus to pins as per the current Pin 78

Assignment, e.g., Debug port pin [5] = CLK = TRACECLK.) 79

Function Select: The method by which the Basic Debug Communication channel can be switched between 80

use for Debug Functions and use for operations needed to configure the debug system. 81

Gigabit Trace (GbT): A system architecture that supports transporting trace data over high-speed 82

networks and transports. See [MIPI04a]. 83

Gigabit Debug (GbD): A set of network-specific adaptor specifications for mapping SneakPeek and 84

Gigabit Trace to various functional networks. 85

Hardware Protocol: The signal protocol required for a Debug and Test Controller to correctly move 86

control or data information between the DTC and Target System. 87

High Bandwidth Connection: A Mating Connection, Pin Assignment and Electrical specification for full 88

functionality, high frequency, higher pin count connection between the Target System and the Debug and 89

Test Controller / TPA. 90

High-speed Trace Interface (HTI): The transport specification that defines the electrical and timing 91

characteristics of high-speed serial trace export interfaces. See [MIPI09]. 92

IEEE 1149.7 (basic debug communication): Enhanced IEEE1149.1 Debug and Test communication 93

standard, configurable from 4 to 2 pins. The IEEE 1149.7 interface can be viewed as providing 94

functionality enhanced compared to 1149.1 for Basic Debug Communication and test and with fewer pins. 95

A two-way communication channel for exclusive Debug and Test uses. See [IEEE02]. 96

Intellectual Property (IP): any patents, patent rights, trademarks, service marks, registered designs, 97

topography or semiconductor mask work rights, applications for any of the foregoing, copyrights, 98

unregistered design rights, trade secrets and know-how and any other similar protected rights in any 99

country. Any IP definition by MIPI Bylaws will supersede this local one. 100

Low Pin Count Connection: A Mating Connection, Pin Assignment and Electrical specification for Basic 101

Debug Communication and limited Trace Port functionality, lower frequency, low pin count connection 102

between the Target System and the Debug and Test Controller / TPA. 103

Mating Connection: The connector to be used, defined by specific manufacturer and part number. The 104

required keep out area for board design to enable unobstructed connector mating. The definition of cable 105

characteristics and terminations may include the characteristics of a connection from the point it leaves an 106

output buffer in a chip on the target or host side, routing on a printed circuit board on the DTC or Target 107

System side, cabling between the signal source and destination, and any connections (via connectors) in the 108

signal path. 109

Min-Pin: An interface for Basic Debug Communication with a minimal number of pins (2), using either 110

IEEE 1149.7, SWD or I3C. 111

Mode Select: A method for selecting a different Mating Connection, a different operating mode, a different 112

electrical mode or a combination of these, for example switching between 1149.1 and 1149.7. 113

Architecture Overview for Debug Version 1.3
 19-Mar-2021

4 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Narrow Interface for Debug and Test (NIDnT): A signal-mapping specification that defines how to reuse 114

the functional interfaces commonly available on fielded systems for debug. See [MIPI05]. 115

Nexus: An IEEE-ISTO 5001™ standard interface for embedded processor debug. The Nexus standard 116

includes support for Basic Debug Communication as well as instruction and data tracing. See [ISTO01]. 117

Other Debug: Debug functions not covered by 1149.1, 1149.7 or the Trace Port for example off-chip 118

memory emulation. 119

Parallel Trace Interface (PTI): The interface specification that defines the electrical and timing 120

characteristics of trace export interfaces that consist of a single clock and multiple data signals. See 121

[MIPI02]. 122

Pin Assignment: The mapping of signals to pins, e.g., SIGNAL_NAME on pin number N. This may 123

include restrictions on allowable pin assignments. 124

Processor Trace: The non-intrusive capture and logging of the activity of an embedded processor and the 125

subsystem in which the processor resides. Processor trace generally consists of one or more of the 126

following trace types, but it is not limited to these: 127

• Instruction (PC) Trace – Application execution flow can be reconstructed by processing the logged 128

information 129

• Data Trace – Data access activity is captured at the processor boundary 130

The captured data is encoded for efficiency and this data is stored on-chip for later upload or immediately 131

transmitted through a chip interface to an off-chip receiver. 132

Return Test Clock (RTCK): A non-standard extension to 1149.1 that provides a feedback path for pacing 133

transaction on the interface. 134

Serial Wire Debug (SWD): An interface used for Basic Debug Communication. See [ARM01]. 135

Series Scan Topology: A connection scheme where the control signals on the debug interfaces are 136

connected in parallel, but the data signals are daisy chained. 137

Silicon Test Subsystem (STS): This subsystem supports communication between the DTS and the on-chip 138

logic used for production test (boundary scan, BIST, etc.). 139

Star Scan Topology: A connection scheme where both the control and data signals on the debug interfaces 140

are connected in parallel. 141

System Software Trace (SyS-T): A format for transporting software traces and debugging information 142

between a target system (TS) running embedded software, and a debug and test system (DTS), typically a 143

computer running one or more debug and test applications (debuggers and trace tools). 144

System Trace Module (STM): A system trace interface with capabilities to export SW (printf type) and 145

HW generated traces (e.g., PC trace and memory dumps). Typical implementation is 4-bit parallel double 146

data rate. The STM uses a nibble-oriented protocol called STP. See [MIPI03]. 147

System Trace Protocol (STP): The protocol used with STM. See [MIPI03]. 148

System on a Chip (SoC): An electronic system in which all (or most of) the functional modules are 149

integrated on a single silicon die and packaged as a single chip. 150

System Trace: In the context of this document, system trace refers to SW Instrumentation Trace and HW 151

Instrumentation Trace. 152

• SW Instrumentation Trace:Message output from instrumented application code. 153

• HW Instrumentation Trace: Messages triggered by transactions/events on the SoC infrastructure(s) 154

and other HW modules in the system. 155

Target System (TS): The system being debugged, up to the Debug and Test Interface (DTI). The TS might 156

be a discrete device (a chip) or a collection of 1 to N discrete devices grouped on a board or collection of 157

boards. The TS might also contain 0 to N individual Debug and Test Targets. 158

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 5
 All rights reserved.

Test Access Port (TAP): The on-chip interface to Debug and Test resources. Both 1149.1 and 1149.7 159

support the concept of a Test Access Port. 160

Timing: The AC characteristics of debug signals at the pins of the target device. Includes skew, jitter, rise 161

and fall times, data/clock alignment, set-up and hold times. While this is shown to be common between all 162

connectors, there will likely be some variation, for example the Gigabit connector might not have separate 163

clock and data pins. 164

Trace: A form of debugging where processor or system activity is made externally visible in real-time or 165

stored and later retrieved for viewing by an applications developer, applications program, or, external 166

equipment specializing observing system activity. 167

Trace Channel: A group of one or more signals and a clock that move trace information from the TS to the 168

DTS. There may be more than one Trace Channel between the TS and DTS. 169

Trace Data Protocol: The implementation-specific encoding of a particular type of trace by a particular 170

module. 171

Trace Port: An output port for the transmission of real-time data indicating the operation of the target (e.g., 172

program execution and/or data bus transactions). Data transmitted across the Trace Port may be generated 173

by hardware, software instrumentation, or by a mixture of the two. This does not include trace collected on-174

chip for later upload. 175

Trace Port Analyzer (TPA): An external hardware unit for collecting data transmitted from the Trace Port. 176

The data might be stored locally in real time before uploading to the host debug tools for later analysis by 177

the user, e.g., a logic analyzer or a unit customized to record trace information would both qualify. 178

Trace Wrapper Protocol (TWP): A protocol that wraps trace from different sources into a single stream 179

for simultaneous capture by a single TPA. See [MIPI04] and [MIPI04a]. 180

Trigger: An indication that a specific system event has occurred. A trigger may be an input to the TS, a 181

signal within the TS, or an output from the TS. The response to the trigger is determined by the entity to 182

which the trigger is sent. 183

2.2 Abbreviations
e.g. For example (Latin: exempli gratia) 184

i.e. That is (Latin: id est) 185

2.3 Acronyms
AC Alternating Current 186

BIST Built-in Self-Test 187

CCC Common Command Code 188

CPU Central Processing Unit 189

DACS Debug Access and Control Subsystem 190

DDR Double Data Rate 191

DFT Design for Test 192

DIP Data Integrity Package 193

DIVS Debug Instrumentation and Visibility Subsystem 194

DNI Debug Network Interfaces 195

DPI Debug Physical Interfaces 196

Architecture Overview for Debug Version 1.3
 19-Mar-2021

6 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

DSP Digital Signal Processor 197

DTC Debug and Test Controller 198

DTI Debug and Test Interface 199

DTS Debug and Test System 200

DTT Debug and Test Target 201

GbD Gigabit Debug 202

GbT Gigabit Trace 203

HTI High-speed Trace Interface 204

HW Hardware 205

I3C Improved Inter Integrated Circuit 206

ID Identifier 207

IEEE Institute of Electrical and Electronics Engineers 208

IP Intellectual Property 209

IPS Internet Protocol Sockets 210

IPR Intellectual Property Rights 211

ISTO Industry Standards and Technology Organization 212

JTAG Joint Test Action Group 213

microSD Micro Secure Digital 214

MMC MultiMediaCard 215

NIDnT Narrow Interface for Debug and Test 216

nTRST Not Test Reset 217

OFM Original Functional Mode 218

OS Operating System 219

PC Personal Computer or Program Counter 220

PCB Printed Circuit Board 221

PHY Physical Interface 222

POR Power on Reset 223

PTI Parallel Trace Interface 224

RF Radio Frequency 225

RTCK Return Test Clock 226

SIM Subscriber Identity Module 227

SoC System on a Chip 228

SPP SneakPeek Protocol 229

SPTB SneakPeek Transfer Block 230

STM System Trace Module 231

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 7
 All rights reserved.

STP System Trace Protocol 232

STS Silicon Test Subsystem 233

SW Software 234

SWD Serial Wire Debug 235

SyS-T System Software Trace 236

TAP Test Access Port 237

TCK Test Clock 238

TCKC Test Clock Compact 239

TCP Transmission Control Protocol 240

TDI Test Data Input 241

TDIC Test Data Input Compact 242

TDO Test Data Output 243

TDOC Test Data Output Compact 244

TDP Trace Data Protocol 245

TMS Test Mode Select 246

TMSC Test Mode Select Compact 247

TPA Trace Protocol Analyzer 248

TS Target System 249

TWP Trace Wrapper Protocol 250

UDP User Datagram Protocol 251

USB Universal Serial Bus 252

WG Working Group 253

2.4 Use of Inclusive Language
The MIPI Alliance is committed to the use of inclusive language in its specifications and documentation. 254

Terms such as “master” and “slave” are being replaced with better, more descriptive terms and the MIPI 255

Alliance is actively updating its documentation to use the new inclusive language. This document will no 256

longer include these non-inclusive terms and the reader will notice the new language. 257

Note that at the time of publication, not all the documents referenced in this document were updated. The 258

table below is a list of the legacy terms that have been updated in this document with the new inclusive 259

language. 260

Referenced Specification Legacy Term New Term
Debug for I3C Master Controller

Multi-Mastering Multiple Controller-capable

Slave Target

STP Master Major Source

 261

Architecture Overview for Debug Version 1.3
 19-Mar-2021

8 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

3 References
Note: 262

Public Release Editions are available for most of the following MIPI Alliance adopted specifications, 263
see links in respective sections. 264

[MIPI01] MIPI Alliance Recommendation for Debug and Trace Connectors, version 1.10.00 and 265

higher, MIPI Alliance, Inc., 16 March 2011. 266

[MIPI02] MIPI Alliance Specification for Parallel Trace Interface (PTISM), version 2.0, MIPI 267

Alliance, Inc., 3 May 2011. 268

[MIPI03] MIPI Alliance Specification for System Trace Protocol (STPSM), version 2.2, MIPI 269

Alliance, Inc., 21 August 2015. 270

[MIPI04] MIPI Alliance Specification for Trace Wrapper Protocol (TWPSM), version 1.00.00, MIPI 271

Alliance, Inc., 23 February 2010. 272

[MIPI04a] MIPI Alliance Specification for Trace Wrapper Protocol (TWPSM), version 1.1, MIPI 273

Alliance, Inc., 3 September 2014. 274

[MIPI05] MIPI Alliance Specification for Narrow Interface for Debug and Test (NIDnTSM), version 275

1.2, MIPI Alliance, Inc., 17 August 2017. 276

[MIPI06] MIPI Alliance Specification for SneakPeekSM Protocol (SPPSM), version 2.0, MIPI 277

Alliance, Inc., 21 May 2019. 278

[MIPI07] MIPI Alliance Specification for Gigabit Debug for USB, version 1.1, MIPI Alliance, Inc., 279

12 October 2017. 280

[MIPI08] MIPI Alliance Specification for Gigabit Debug for Internet Protocol Sockets, version 1.0, 281

MIPI Alliance, Inc., 20 May 2016. 282

[MIPI09] MIPI Alliance Specification for High-Speed Trace Interface (HTISM), version 1.0, MIPI 283

Alliance, Inc., 10 March 2016. 284

[MIPI10] MIPI Alliance Specification for System Software Trace (SyS-TSM), version 1.0, MIPI 285

Alliance, Inc., 1 December 2017. 286

[MIPI11] MIPI System Software Trace (MIPI SyS-T) – Example Code, https://github.com/MIPI-287

Alliance/public-mipi-sys-t, MIPI Alliance, Inc., last accessed 19 March 2021. 288

[MIPI12] MIPI Alliance Specification for Debug for I3C, version 1.0, MIPI Alliance, Inc., 289

21 April 2020. 290

[MIPI13] MIPI Alliance Specification I3CSM, version 1.1, MIPI Alliance, Inc., 27 November 2019. 291

[MIPI14] MIPI Alliance Specification I3C BasicSM, version 1.0, MIPI Alliance, Inc., 19 July 2018. 292

[IEEE01] IEEE Std 1149.1™-2013, Standard for Test Access Port and Boundary-Scan 293

Architecture, Institute of Electrical and Electronic Engineers, 2013. 294

[IEEE02] IEEE Std 1149.7™-2009, Standard for Reduced-Pin and Enhanced-Functionality Test 295

Access Port and Boundary Scan Architecture, Institute of Electrical and Electronic 296

Engineers, 2009. 297

[ISTO01] IEEE-ISTO 5001™-2012, The Nexus 5001 Forum™ Standard for a Global Embedded 298

Processor Debug Interface, version 3.0.1, IEEE- Industry Standards and Technology 299

Organization, 2012. 300

[ARM01] ARM® CoreSight™ Architecture Specification, version 3.0, ARM Limited, 2017. 301

https://github.com/MIPI-Alliance/public-mipi-sys-t
https://github.com/MIPI-Alliance/public-mipi-sys-t

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 9
 All rights reserved.

[AUR01] Aurora 8B/10B Protocol Specification, SP002 (v2.3), Xilinx, Inc., 145 302

http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol303

_spec_sp002.pdf, 1 October 2014. 304

[USB01] USB 3.1 Device Class Specification for Debug Device, Revision 1.0, http://www.usb.org, 305

14 July 2015. 306

http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
http://www.usb.org/

Architecture Overview for Debug Version 1.3
 19-Mar-2021

10 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

This page intentionally left blank.

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 11
 All rights reserved.

4 Debug System

4.1 System Framework
The modern systems on a chip often have complex Debug and Test architectures. In a simplistic view, the 307

modern SoC Debug and Test architecture can be broken down into the following major subsystems: 308

• Debug Access and Control Subsystem (DACS) – This subsystem provides a path for the DTS to 309

obtain direct access to application visible system resources (registers and memory). It also 310

provides bidirectional communication for configuration and control of debug specific modules in 311

the TS. The communication between the debug and the DACS is generally implemented via one of 312

the following (this is not an exhaustive list): 313

• Serial scan via a dedicated Debug and Test interface on the device 314

• Memory mapped using a dedicated debug interconnect or in some cases the application visible 315

system interconnect 316

• A proprietary communication protocol and interface on the device boundary 317

• Debug Instrumentation and Visibility Subsystem (DIVS) – This subsystem provides 318

communication and storage of data generated by debug instrumentation modules (like processor 319

and system trace) in the target system. DIVS communication path to the DTS is usually via high-320

speed serial or trace interfaces and is generally unidirectional. 321

• System Test Subsystem (STS) – This subsystem supports communication between the DTS and 322

the on-chip logic used for production test (boundary scan, BIST, etc.). Access to the STS is 323

generally accomplished via serial scan. 324

• Debug Physical Interfaces (DPI) – The physical interfaces that support debug at the SoC 325

boundary and on the PCB. 326

• Debug Network Interfaces (DNI) – The internal interfaces that allow debug and trace data to be 327

transmitted to and from the DTS on functional networks. This communication is with dedicated 328

intelligent resources (sometimes called the Debug Butler) that possibly: 329

• Enable bare metal debug on systems where the normal functional communication management 330

is not yet functioning 331

• Allow debug to minimize or eliminate the use of functional resources for managing debug 332

communications 333

Architecture Overview for Debug Version 1.3
 19-Mar-2021

12 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Figure 1 provides a top-level view of how all the pieces of the Debug and Test architecture are integrated 334

on a device. 335

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

 336

Figure 1 MIPI Debug Generic System Framework

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 13
 All rights reserved.

4.2 The MIPI Debug and Test System
The MIPI Debug WG effort does not address all the functional blocks in the generic framework. The 337

Debug WG standards and recommendations focus on device and board interfaces and protocols. There is 338

also an effort to standardize on communications for debug instrumentation (i.e., trace protocols), but with a 339

generic approach that maintains compatibility with protocols that already exist. Figure 2 illustrates the 340

areas of the framework that are targeted by the various MIPI Debug specifications and recommendations 341

addressed in this document. 342

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function

Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

IEEE
1149.7 SneakPeek

Gigabit
Debug

TWP

Debug
Connectors

Debug
Connectors

PTI

NIDnT

STP

Gigabit
Trace

NIDnT

SyS-T

HTI

Debug
for I3C

 343

Figure 2 MIPI Debug Documentation and the Debug Architecture

Architecture Overview for Debug Version 1.3
 19-Mar-2021

14 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Figure 3 shows a more detailed block diagram showing how the generic debug framework can be realized 344

across an entire multiple-chip system. The devices share the basic debug, trace and functional interfaces. 345

Basic run control can be provided via the shared debug connection. Trace transport can utilize a shared link 346

dedicated to trace or a standard application visible network. In all cases, the footprint of the debug interface 347

to the tools is greatly reduced. 348

Application
And Trace Over

HS Link

Connector(s)

Debug and Test System

Basic Debug
Basic Debug

Basic Debug

SOC

Network Stack

Trace
Functions

Application
Functions

PHY Port PHY PortPHY Port

Basic
Debug
Port

Basic
Debug

Functions

Trace Port

Shared
Parallel
Trace

Shared
Parallel
Trace

Shared
Parallel
Trace

SOC

Network
Stack

Trace
Functions

Application
Functions

PHY Port

Basic
Debug
Port

Basic
Debug

Functions

Trace Port

SOC

Network
Stack

Trace
Functions

Application
Functions

PHY Port

Basic
Debug
Port

Basic
Debug

Functions

Trace Port

Application
And Trace Over

HS Link
Application

And Trace Over
HS Link

 349

Figure 3 Example MIPI System Overview

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 15
 All rights reserved.

5 Debug Physical Interfaces (DPI)

5.1 Parallel Trace Interface (PTI) Specification

5.1.1 Trace and Debug Overview
It has become an accepted axiom that as the complexity of an embedded system increases, the need for 350

system designers and developers to obtain visibility into the behavior of the system increases 351

proportionally. One of the most common methods for providing this visibility is to provide a streaming 352

interface on an embedded System on a Chip. This interface can be used to export data about system 353

functionality and behavior to a host system for analysis and display. Since the data exported on this 354

interface often allows developers to reconstruct (or “trace”) some portion of system activity, these types of 355

interface have commonly been referred to as Trace Interfaces or Trace Ports. Examples of trace data 356

include: 357

• The instruction execution sequence for one or more embedded processors. This is commonly 358

referred to as Program Counter (PC) Trace. 359

• Data bus transactions made by an embedded processor core. This is commonly referred to as Data 360

Trace. 361

• Snapshots of transactions on the system interconnect(s). This is commonly referred to as System 362

Trace. 363

• Streaming output from instrumented application code. This is commonly referred to as 364

Instrumentation Trace. 365

The bandwidth requirements for the common trace functions listed above often compel system designers to 366

implement the trace interface as a parallel interface with multiple data signals and a clock. For purposes of 367

this document, the trace interface will subsequently be referred to as the Parallel Trace Interface or PTI. 368

Architecture Overview for Debug Version 1.3
 19-Mar-2021

16 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

5.1.2 Relationship to MIPI Debug Architecture
Figure 4 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 369

PTI specification. 370

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function

Interfaces
High Perf

Debug I/Fs

Debug Network Interfaces

PTI

 371

Figure 4 PTI in the MIPI Debug Architecture

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 17
 All rights reserved.

5.1.3 Trace Scenarios
A typical embedded system may have one or more HW modules that produce trace data. The typical flow is 372

outlined below and illustrated in Figure 5. 373

• Debug and Test Targets (DTTs) reside in the Target System (TS). 374

• Trace modules inside a DTT contain one or more HW sub-modules that capture the system 375

transactions with the required data. See the Trace Collect block in Figure 5. 376

• One or more HW modules encode or compress the data into an implementation specific 377

encoding(s). These encoding(s) are called the Trace Data Protocols (TDPs). See the Trace Format 378

block in Figure 5. 379

• One or more HW modules export the encoded data to the DTC using device pins. The interface 380

used to transfer this data is the Parallel Trace Interface or PTI. See the Trace Export block in 381

Figure 5. 382

• The DTC captures the data. 383

• The data is decoded and analyzed using the DTS. 384

DTT

Trace Module

Debugger

PC or
Workstation

Debug & Test
Controller (DTC)

Debug & Test
System (DTS)

Target System (TS) w/
Single DTT

Debug
Comm.

Link

Serial, parallel,
Etherrnet, USB

connection

P
T
I

Trace
Cable

Trace
Export

Trace
Format

Trace
Collect

Parallel Trace Interface (PTI)

 385

Figure 5 Example System with PTI

Architecture Overview for Debug Version 1.3
 19-Mar-2021

18 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Note that only HW modules directly responsible for producing the data and clock of a PTI are required to 386

implement a PTI. Figure 6 shows how the PTI implementation is dependent upon system configuration. 387

Embedded System

Trace
Module 0

Trace
Interleaving and
Export Module

Pin Manager/
Mux

Trace
Module

1

Trace
Module

2

Trace
Module

3

Trace
Module

4

Trace
Module

5

Trace
Module

6

To Connector and DTC To Connector and DTC To Connector and DTC

PTI PTIPTI

Module Implementing PTI

Module Implementing
Proprietary Interface

PTI Location of PTI

PTI Interconnect

Proprietary Interconnect

Module Implementing an
Internal PTI

 388

Figure 6 PTI Layers within a System

The scenario for Trace Module 0 is reasonably straightforward. The module itself is directly connected to a 389

dedicated PTI on the device boundary and the module is responsible for implementing the PTI. 390

The scenario for Trace Modules 1–3 is slightly more complex. Here multiple modules export trace through 391

a device level pin manager or mux. This management logic is only responsible for controlling which pins 392

on the device PTI are assigned to the device internal trace clients. It does not produce the data and clock 393

signals for the PTI but only routes them from the various trace modules. Thus, the individual trace modules 394

are required to implement the PTI. Since the pin manager routes the internal PTI signals to the device 395

boundary, there is also a PTI at the device pins. 396

The scenario for Trace Modules 4–6 shows a system where multiple trace modules provide data over a 397

proprietary trace interconnect. This system allows data to be combined or interleaved in some fashion 398

before export. The interleaving and export module implements the PTI and the individual trace modules 399

communicate using implementation specific protocols that are beyond the scope of this document. 400

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 19
 All rights reserved.

5.1.3.1 Multi-Point Trace Connections
Version 2 of the PTI specification expands the interface description to include a shared trace connection 401

where multiple PTI interfaces are merged through a single connector on a PCB board. Multi-point PTIs are 402

very useful for supporting trace on fielded systems that have multiple trace-enabled ASICs but only a single 403

connector (with limited data pins) for interfacing to an external DTC. A standard example would be a 404

mobile terminal with an application and modem SoC and a single MIPI NIDnT connection. 405

Devices can be configured to drive data on a subset of the PTI signals on their boundaries. The PTI signals 406

are merged at the connector, but only one PTI is driving any given data signal. The clock for all the 407

interfaces is supplied from an external source (generally the DTC). Figure 7 shows an example with four 408

devices (each with 4-pin PTIs) sharing a connector with each of them only exporting on a single pin. 409

A similar configuration is shown in Figure 8, but in this scenario only two devices are active and the port is 410

shared as 3 pins and 1 pin. These are just examples, and the multi-point routing scheme defined in this 411

document supports varying PTI widths and numbers of devices. 412

Providing these enhanced features requires new operating modes for the clock and data portions of a PTI. 413

• Clock Modes 414

• PTI-out-clock Mode: The PTI sources the clock along with the data 415

• PTI-in-clock Mode: The clock for the PTI is an input to the module driving the PTI data 416

• Data Modes 417

• Point-to-point Data Mode: Data indexes are fixed on the PTI 418

• Multi-point Data Mode: Data indexes may shift across the PTI 419

Architecture Overview for Debug Version 1.3
 19-Mar-2021

20 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

TRC_CLK

DATA3

DATA2

DATA0

DATA1

C
onnector

DTC

 420

Figure 7 Multi-Point PTI with 4-Pin Trace and Four Devices Sharing the Connector

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 21
 All rights reserved.

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

Device

Trace Pin
Mgr

TRC_CLK
C

onnector

DTCDATA1

DATA0

DATA2

DATA3

 421

Figure 8 Multi-Point PTI with 4-Pin Trace and Two Devices Sharing the Connector

5.1.4 Detailed Specification
For details of the MIPI PTI, consult the document: MIPI Alliance Specification for Parallel Trace Interface, 422

[MIPI02]. This specification is available to MIPI members and to the public through the MIPI website. The 423

public version of the specification can be found at: http://resources.mipi.org/mipi-pti-download. 424

http://resources.mipi.org/mipi-pti-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

22 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

5.2 High-speed Trace Interface (HTI) Specification

5.2.1 Overview
Transferring data off-chip from high performance embedded microprocessor cores requires a data port with 425

sufficient trace data bandwidth. Parallel port implementations such as MIPI Parallel Trace Interface (PTI), 426

[MIPI02], employ a clock synchronous parallel interface, using as many as 32 parallel data lines to provide 427

the required bandwidth. Increasing CPU clock speeds and use of multiple processor cores demand 428

increasing data port bandwidth, while at the same time the number of I/O pins used for the data port is 429

being reduced to facilitate lower cost and a higher level of SOC/ASIC integration. 430

MIPI High-speed Trace Interface (HTI) is a serial implementation of the data port, taking advantage of 431

available high-speed serial interface technology used in interfaces such as PCI Express®, DisplayPortTM, 432

HDMI®, or USB, provides higher transmit bandwidth with fewer I/O pins compared with a parallel 433

implementation. Unlike protocol specifications in the MIPI Gigabit Debug portfolio, such as [MIPI08], 434

HTI is not designed to be used over the high-level protocols implemented by interfaces such as PCI 435

Express, but is intended to re-use the low-level physical high-speed portions of those interfaces, in a bare-436

metal environment. 437

5.2.2 Relationship to the MIPI Debug Architecture
Figure 9 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 438

HTI specification. 439

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect
C

ore
D

ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

HTI

 440

Figure 9 HTI in the MIPI Debug Architecture

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 23
 All rights reserved.

5.2.3 HTI Details
HTI defines a method to transport a single stream of trace information over a channel consisting of one to 441

eight high-speed serial lanes, using the Aurora 8B/10B protocol [AUR01]. HTI uses the serial simplex 442

mode of Aurora to transmit data in one direction from TS to DTS. 443

The HTI specification supports transmission of either the MIPI STP [MIPI03] protocol or MIPI TWP 444

[MIPI04a] protocol over an HTI channel. 445

The HTI specification consists of the following aspects: 446

• The LINK layer, which defines how the trace is packaged into the Aurora 8B/10B protocol. 447

• The PHY layer, which defines the electrical and clocking characteristics. 448

• A programmer's model for controlling HTI and providing status information. 449

In addition to the trace information, the HTI LINK layer provides the ability to include: 450

• Optional CRC data, to assist in detecting errors in the trace transmission. 451

• Optional User Flow Control messages, to indicate additional information about the trace data 452

stream. 453

5.2.4 Detailed Specification
For details on HTI, consult the MIPI Alliance Specification for High-speed Trace Interface (HTI), 454

[MIPI09]. This specification is available to MIPI members and to the public through the MIPI website. The 455

public version of the specification can be found at: http://resources.mipi.org/mipi-hti-download. 456

http://resources.mipi.org/mipi-hti-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

24 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

5.3 Debug Connector Recommendations

5.3.1 Dedicated Debug Connector Overview
Board developers, debug tools vendors and test tool vendors all benefit when the number of connectors and 457

connector pin mappings used to support Debug and Test is minimized. To this end, MIPI Alliance is 458

promoting a set of connectors and mappings that address a wide variety of debug use scenarios. 459

5.3.2 Relationship to the MIPI Debug Architecture
Figure 10 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 460

connector recommendation. 461

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

Debug
Connectors

Debug
Connectors

 462

Figure 10 Connectors in the MIPI Debug Architecture

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 25
 All rights reserved.

5.3.3 Basic Debug Connectors
As the connector was not part of the original IEEE 1149.1 JTAG standard, a large number of different 463

JTAG connectors have emerged. The MIPI recommendation of standard connectors promotes convergence 464

toward a minimum set of debug connectors. The scalable 0.05 inch Samtec FTSH connector family 465

provides a cheap, small and robust target connection and is available in many variants (including lockable 466

ones) from multiple connector vendors. The pin-out allows scaling of the debug connection to meet 467

different requirements. This includes very small footprint connections (down to 10 pins), legacy JTAG 468

support (including vendor specific pins) and system level trace support (STM). 469

Missing pin and Plug at pin 7
for key.

 470

Figure 11 Basic Debug PCB (left) and Cable End Connector (34-pin Samtec FTSH)

5.3.4 High-Speed Parallel Trace Connectors
Many debug tools vendors support target systems with high-speed trace interfaces. These tools utilize a 471

number of different mating connectors. 472

The MIPI Alliance Recommendation for Debug and Trace Connectors, [MIPI01], document defines two 473

connectors for supporting high-speed trace and basic debug. The first connector is only intended for 474

backwards-compatible designs. The second connector is recommended for new designs. The goal is to have 475

this recommendation define a “de facto” industry standard for the trace connection and thus lessen the 476

burden on target system and tools developers that need to support a large number of different mating 477

connections. 478

The recommended trace connector is a 60 pin Samtec QSH/QTH connector. The signal to pin mapping, 479

which is defined in the recommendation, supports one run control and several trace configurations. The 480

different trace configurations use up to 40 data signals and up to 4 clock signals. To minimize complexity, 481

the recommendation defines four standard configurations with one, two, three or four trace channels of 482

varying width. 483

 484

Figure 12 Recommended Samtec QSH/QTH Connector

Architecture Overview for Debug Version 1.3
 19-Mar-2021

26 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

5.3.5 Detailed Documentation
For details of the MIPI recommended connectors and connector pin mappings, consult the document: MIPI 485

Alliance Recommendation for Debug and Trace Connectors, [MIPI01]. This document is available to MIPI 486

members and to the public through the MIPI website. The public version of the specification can be found 487

at: https://mipi.org/sites/default/files/MIPI-Alliance-Recommendation-Debug-Trace-Connectors.pdf. 488

https://mipi.org/sites/default/files/MIPI-Alliance-Recommendation-Debug-Trace-Connectors.pdf

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 27
 All rights reserved.

5.4 Narrow Interface for Debug and Test (NIDnT) Specification

5.4.1 Overview
The MIPI Debug Working Group has standardized a way to utilize functional interfaces for debug or test. 489

This technology is called NIDnT (Narrow Interface for Debug and Test). It allows better debug support in 490

production or near-production units. 491

NIDnT technology defines low pin count, reliable, and high performance, debug interfaces that can be used 492

in deployed systems. These interfaces provide access to basic debug, trace of application activity, and HW 493

test capability by reusing already existing functional interfaces. In some cases, these interfaces are 494

accessible at the packaged boundary. This technology provides the means to use functional interfaces for 495

either functional or debug purposes. One or more functional interfaces (e.g., MMC card slot for trace and 496

USB for basic debug) may be used to provide debug capability. NIDnT technology does not aim to replace 497

current technologies such as debugging via a serial interface (e.g., GDB using a UART, or on-device debug 498

agent). 499

5.4.2 Relationship to the MIPI Debug Architecture
Figure 13 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 500

NIDnT specification. 501

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

NIDnT NIDnT

 502

Figure 13 NIDnT in the MIPI Debug Architecture

Architecture Overview for Debug Version 1.3
 19-Mar-2021

28 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

5.4.3 NIDnT Details
NIDnT technology has the potential for changing the product development paradigm as it provides for the 503

use of one or more of a product’s functional interfaces for debug. This can extend the availability of the 504

debug capabilities used in the early stages of product development to the latter stages. This is especially 505

valuable when these interfaces are available at the boundary of the product’s actual physical enclosure in 506

the product’s final form factor. This change in the product development paradigm is described in the 507

following paragraphs. 508

During the early stages of product development, IEEE 1149.1/1149.7/SWD/I3C based basic debug, trace of 509

application activity, and software messages sent over simple streaming interfaces like serial ports are 510

typically used for debug. Historically, much of this product development is performed using test or 511

development boards. These boards provide dedicated and readily accessible Debug and Test interfaces for 512

connecting the tools. A system with a dedicated debug interface is shown in Figure 14. 513

Pin

Debug Interface

Application Interface Function Driver Application

SoC

TS

PinI/O Driver

I/O Driver

C
on

ne
ct

or
C

on
ne

ct
or

DTS

 514

Figure 14 Example of System with a Dedicated Debug Interface

In most cases, a product’s final form factor does not have dedicated Debug and Test interfaces as these 515

interfaces are not propagated to the boundary of the product’s physical enclosure. This hampers the 516

identification of bugs present at this point in the product development. 517

A product might include a proprietary JTAG connector that requires some disassembly (e.g., removing the 518

battery cover and battery) and the use of a test fixture. The physically invasive process of accessing this 519

connector could itself cause bugs or RF performance issues to disappear, or new ones to appear. 520

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 29
 All rights reserved.

Figure 15 shows how NIDnT technology extends the use of functional interfaces for Debug and Test 521

purposes. It creates a dual use functional interface by multiplexing the debug signals with the normal 522

function signals within the SoC in a manner that is similar to a switch. Connecting either the normal 523

function or the debug function to the interface connects that function’s inputs and outputs to the interface. 524

Disconnecting either the normal function or debug function from the interface connects its inputs to 525

inactive default values that create the function’s inert operation while leaving its outputs unused. For 526

example, a SoC could multiplex an IEEE 1149.7 Test Access Port (TAP) and a Parallel Trace Interface 527

(PTI) over the functional I/Os that normally provide a microSD interface. In this case, the IEEE 1149.7 528

TAP could be used for both basic debugging and as a control channel for the trace function that utilizes the 529

PTI interface. 530

Pin

Debug Interface

Pin Management
Infrastructure

Application Interface Function Driver

DTS

SoC

TS

PinI/O Driver

I/O Driver

C
on

ne
ct

or
C

on
ne

ct
or

 531

Figure 15 Example of System with NIDnT Capability

It is expected that adapters will be used to connect a product’s NIDnT Interface (e.g., microSD interface, or 532

USB) to the MIPI Debug Connectors (as defined in [MIPI01]). The use of an adapter provides for 533

debugging the product in its final form factor with standard debug tools, as the adapter remaps the signals 534

presented by the tools on these standard debug connectors to the appropriate positions on the functional 535

connectors. 536

5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes
A NIDnT Interface supports an operating mode that provides all functional operation of the interface 537

(Overlay Mode 0, also called the Original Functional Mode (OFM)) and one or more non-OFM Overlay 538

Modes (Overlay Modes 1 through n) providing debug and test capability. 539

The debug and test capabilities that can be supported with these Overlay Modes are listed below with their 540

associated pin counts shown in parenthesis. These capabilities might be mixed and matched to provide one 541

or more combinations of debug and test capability within the limitations (pin count and drive 542

characteristics) of a specific functional interface or combination of interfaces. The combinations supported 543

for a specific NIDnT Interface are outlined in interface-specific sections of the NIDnT specification. 544

Architecture Overview for Debug Version 1.3
 19-Mar-2021

30 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Table 1 Summary of Test/Debug Capabilities Supported by NIDnT 545

Capability Interface with
Single-Ended Electricals

Interface with
Differential Electricals

Basic Debug

2-pin (Min-Pin) Debug
• IEEE 1149.7 [IEEE02]
• Serial Wire Debug [ARM01]
• UART
• I3C
• Vendor Defined Single-Ended Debug

4-pin High-Speed Debug
• Vendor Defined Differential Debug

5-pin Legacy Debug
• IEEE 1149.1 [IEEE01]

6-pin Modified Legacy Debug
• Modified IEEE 1149.1 Standard with

return clock (deprecated)

Trace

Single-Ended Trace
• Parallel Trace Interface [MIPI02]
• Vendor Defined Single-Ended Trace

High-Speed Trace
• High-Speed Trace Interface (HTI)

[MIPI09]
• Vendor Defined Differential Trace

User Defined Vendor Defined Single-Ended Vendor Defined Differential

The trace function can either run with a clock shared with the 2-pin Min-Pin debug interface or run with an 546

independent clock. If the focus is on maximum trace bandwidth, a shared clock provides the largest number 547

of trace data pins but ties the data rate of each data pin to the clock rate of the 2-pin Min-Pin debug 548

interface. 549

Non-OFM Overlay Modes that support debug, i.e., that switch some of the NIDnT Interface pins to being 550

used for Basic Debug signals, are called Debug Overlay Modes (see table in the NIDnT Specification, 551

[MIPI05]). 552

5.4.5 Functional Interfaces that are NIDnT Candidates
The current version of the NIDnT Specification addresses the reuse of the following interfaces: 553

• microSD 554

• USB (USB 2.0 and USB Type-CTM) 555

• Display (HDMI and DisplayPort (DP)) 556

Future versions of the NIDnT Specification might support other interfaces including, but not limited to: 557

• SIM (smart card) 558

• UniPro 559

5.4.6 Detailed Specification
For details of NIDnT technology, consult: MIPI Alliance Specification for Narrow Interface for Debug and 560

Test (NIDnT), [MIPI05]. This specification is available to MIPI members and to the public through the 561

MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-nidnt-562

download. 563

http://resources.mipi.org/mipi-nidnt-download
http://resources.mipi.org/mipi-nidnt-download

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 31
 All rights reserved.

6 Debug Access and Control Subsystem (DACS)

6.1 IEEE 1149.7 Debug and Test Interface Specification
The IEEE 1149.7 standard [IEEE02] supports the needs of both Debug and Test. It is a superset of the 564

IEEE 1149.1 standard [IEEE01] and represents a natural evolution of this standard. This approach 565

preserves the industry’s hardware and software investments in the IEEE 1149.1 standard since its inception. 566

While this is not a MIPI specification, the min-pin debug effort started in MIPI, so it is included here to 567

help complete the debug framework. The standard: 568

• Provides a substantial, yet scalable set of additional debug related capability 569

• Supports multiple connection topologies 570

• Four-wire series or star 571

• Two-wire star 572

• Halves the width of the interface in two-wire star configurations while maintaining performance 573

Six capability classes (T0-T5) are supported, with the implementer selecting the capability class 574

implemented. A class defines both mandatory and optional capability. Class capability increases 575

progressively, with the capability of a class including the capability of all lower numbered classes. 576

Capability classes T0-T2 support operation with the four-wire Test Access Port (TAP) (defined by the IEEE 577

1149.1 standard) connected in a four-wire series topology. Each of these classes incrementally extends the 578

IEEE 1149.1 capability while using only the Standard Protocol defined by the IEEE 1149.1 standard. 579

Capability classes T3 additionally supports deployment in a four-wire star topology. 580

Capability classes T4-T5 provide for implementing devices with either a four-wire TAP (IEEE 1149.1 style) 581

or a two-wire TAP (unique IEEE 1149.7 style). Devices with the four-wire TAP configuration can be 582

operated in all connection topologies. Devices with the two-wire TAP configuration can be operated only in 583

a two-wire scan topology. 584

The T4-T5 classes incorporate the Advanced Protocol. The Advanced Protocol provides for the joint use of 585

the TAP for real-time system instrumentation, classic debug, and test, using only the TCKC and TMSC 586

signals as it: 587

• Redefines the functionality of the IEEE 1149.1 TCKC and TMSC signals 588

• Eliminates the need for the TDIC and TDOC signals 589

• Allows the use of the TAP for both scan and non-scan data transfers 590

The combination of a two-wire TAP and use of the Advanced Protocol provides the capability of a five-591

wire IEEE 1149.1 TAP using only two signals, plus additional system debug capability. 592

Architecture Overview for Debug Version 1.3
 19-Mar-2021

32 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

A high-level view of the IEEE 1149.7 interface connectivity between a DTS and TAPs within the TS is 593

shown in Figure 16. Both the four-wire (wide) and two-wire (narrow) TAP configurations are shown with 594

an optional test reset signal. A deprecated non-standard return clock signal is also comprehended with the 595

four-wire configuration (the use of this and other non-standard signals is strongly discouraged by the 596

standard). 597

Debug and Test System

TCK(C)

TMS(C)

TDO(C)

TDI(C)

RTCK

IEEE 1149.7
Circuitry

RTCK

IEEE 1149.7
Circuitry

Target System

Although TCKC is shown as bidirectional it is sourced by either the DTS or the TS

Required for operation with standard/advanced protocols

Required for data transfers with standard protocol

Non-standard 1149.1 extensions (deprecated functionality)

Optional reset signal

nTRST nTRST

TCK(C)

TMS(C)

TDO(C)

TDI(C)

Narrow Wide

 598

Figure 16 DTS to TS Connectivity

All capability classes begin operation using the Standard Protocol. IEEE 1149.7 operation is compatible 599

with IEEE 1149.1 from power-up, with the function of TCK(C) and TMS(C) signals providing the 600

functionality (or a superset thereof) of the TCK and TMS signals that is specified by the IEEE 1149.1 601

standard. 602

All IEEE 1149.7 based devices may be implemented in a manner that allows their use in system 603

configurations where there is: 604

• A mix of components implementing different capability classes 605

• A mix of connection topologies 606

The DTS can use facilities defined by the standard to determine the following: 607

• The types of connection topologies deployed within the TS 608

• The component mix with the TS: 609

• 1149.1 components 610

• 1149.7 components + class of each component 611

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 33
 All rights reserved.

6.1.1 Relationship to MIPI Debug Architecture
Figure 17 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 612

IEEE 1149.7 standard. 613

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

IEEE
1149.7

 614

Figure 17 IEEE 1149.7 in the MIPI Debug Architecture

6.1.2 Detailed Specification
For details of the 1149.7 specification, consult the document: IEEE 1149.7 Standard for Reduced-pin and 615

Enhanced-functionality Test Access Port and Boundary Scan Architecture [IEEE02]. 616

Architecture Overview for Debug Version 1.3
 19-Mar-2021

34 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

6.2 SneakPeek Specification
The SneakPeek framework is intended to enable debugging of a Target System via standard network 617

connection. This is accomplished by moving a portion of the Debug and Test Controller function onto the 618

SoC. These embedded DTC functions can be reached by network communication links that previously have 619

not been leveraged for DTC-like debug. SneakPeek also leverages a significant portion of the on-chip 620

debug infrastructure. As a result, DTC tools that previously used dedicated debug links (e.g., 1149.7 or PTI) 621

can easily be ported to work in a SneakPeek framework through simple network adaptor layers. The 622

identical capabilities realized via the dedicated debug interfaces should be available via SneakPeek (with 623

possible performance penalties). 624

6.2.1 Relationship to MIPI Debug Architecture
Figure 18 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 625

SneakPeek specification. 626

System Functional/Application Modules SW
Instrumentation

System

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System

M
em

ory

System

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug

Export
Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

System

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

SneakPeek

 627

Figure 18 SneakPeek in the MIPI Debug Architecture

6.2.2 Overview
The SneakPeek Protocol (SPP) is used to communicate between a Debug Test System (DTS) and a Target 628

System (TS). This communication facilitates using Debug Applications (typically software) within the DTS 629

to debug the operation of the TS. 630

The SneakPeek Protocol abstracts the system designer from dedicated debug communication interfaces 631

such as JTAG and replaces them with the familiar mechanism of address-mapped read and write 632

transactions to enable the Debug Applications to observe, interrogate and adjust the Target System. These 633

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 35
 All rights reserved.

transactions might be addressed to main system memory, special function memories, or address-mapped 634

peripherals within the TS. 635

If the system requires legacy dedicated debug communication interfaces to be used internally within part of 636

a system, then these could be constructed by a dedicated address-mapped peripheral within the Target 637

System that is then accessed by the DTS via SneakPeek. 638

Figure 19 illustrates the route by which one or more debug software applications in a DTS utilize 639

SneakPeek Memory Agents within a TS to perform address-mapped transactions for them. 640

Core
Debug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

Debug
Debug Interconnect

S
ystem

M

em
ory

System Interconnect

SneakPeek
Memory Agent

SneakPeek
Memory Agent

SneakPeek Command Engine

SneakPeek Network Adaptor

Network Stack

PHY

SneakPeek Manager

Network connection

PHY

Network Stack

SneakPeek Network Adaptor

Other Clients

Debug Application(s)
Debug Application(s)

Debug Application(s)

DTS

TS

Other Clients Other Clients

Other Clients

Transaction Mapping
Transaction Mapping

Transaction Mapping

 641

Figure 19 Overview of SneakPeek System

The basic communication units used by SneakPeek are SneakPeek Command Packets sent from the DTS to 642

the TS, and SneakPeek Response Packets sent from the TS to the DTS. To provide more efficient 643

interactions with the communication network, the DTS packs typically many Command Packets into a 644

single SneakPeek Transfer Block (SPTB) before handing this over to the network driver for transmission to 645

Architecture Overview for Debug Version 1.3
 19-Mar-2021

36 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

the TS. Similarly, the TS packs typically many Response Packets into a single SPTB for transmission to the 646

DTS. 647

Figure 20 shows how the SneakPeek Protocol is built on top of existing network infrastructure. 648

PHY PHY

Network
Adaptor

SneakPeek
Manager

Network
Stack

SneakPeek
Network
Adaptor

SneakPeek
Command
Packets
in SPTBs

SneakPeek
Response
Packets
in SPTBs

SneakPeek
Command
Packets
in SPTBs

SneakPeek
Response
Packets
in SPTBs

Network Data
Transport Units

Network
Stack

Network Data
Transport Units

SneakPeek
Command

Engine

System
& Debug

Memory Maps

Address-mapped
reads & writes

DTS TS

Memory
Agents

Debug
Application

Debug
Requests

Transaction
Mapping

Debug
Application
Transaction

Mapping

Debug
Application
Transaction

Mapping

Debug
Requests

 649

Figure 20 SneakPeek Protocol and Network Stacks in DTS and TS

In summary: 650

• The DTS sends SneakPeek Command Packets grouped into SPTBs to the TS over a data 651

communication network. 652

• These Command Packets cause an action or effect in the TS, typically an address-mapped read or 653

write transaction. The Command Engine generates a Response Packet corresponding to each 654

Command Packet (with some special case exceptions). 655

• The TS sends SneakPeek Response Packets grouped into SPTBs to the DTS over the data 656

communication network. 657

• The SneakPeek Packets in a stream have a defined order at their source and are interpreted in this 658

order at their destination. The SneakPeek Protocol is not concerned with actual transmission order 659

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 37
 All rights reserved.

over the physical or other layers of the network stack but assumes that the network reconstructs 660

the original order before handing off the SneakPeek Packets at their destination. 661

6.2.3 Protocol Styles
SPP version 2.0 introduces TinySPP, an “optimized” style of the SneakPeek Protocol focusing on low 662

bandwidth interfaces and “tiny” implementations. TinySPP provides a reduced feature-set (e.g., no 663

sequence number, reduced access space, reduced direct addressing space, and no access size variability) 664

and “coexists” with SPP version 1.0, or FullSPP. Reducing the size of the Command and Response Packets 665

is done by assuming certain behaviors and by placing some restrictions on these interfaces. These 666

restrictions and assumptions are usually acceptable as a tradeoff for a smaller and simpler implementation 667

more tailored for lower bandwidth and/or half-duplex interfaces. 668

The main differences between the TinySPP and FullSPP styles are shown in Table 2. 669

Table 2 Comparison of SneakPeek Protocol Styles

Feature TinySPP FullSPP
Number of Access Spaces 8 (3-bit field) 32 (5-bit field)

Sequence Number N/A.
Additional requirements to
network:
• Messages stay in order
• Guaranteed Delivery
• DTS/TS has to do book-

keeping for request/
response

Present

Standard Size Field Chosen by TS Different options

Size of Transaction Byte
Count (TBC) Field

7 bits 16 bits

Short Addressing 6-bit address replacement
supported.
Short addressing is required in a
TinySPP implementation

N/A

Packet Alignment Byte aligned 16-Byte aligned

Shortest Packet Length 4 Bytes 16 Bytes

Usage in MIPI Specifications Debug for I3C GbD for USB, GbD for IPS

6.2.4 Detailed Specifications
For details of the SneakPeek Protocol, consult the document: MIPI Alliance Specification for SneakPeek 670

Protocol, [MIPI06]. This specification is available to MIPI members and to the public through the MIPI 671

website. The public version of the specification can be found at: http://resources.mipi.org/mipi-spp-v2-672

download. 673

http://resources.mipi.org/mipi-spp-v2-download
http://resources.mipi.org/mipi-spp-v2-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

38 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

This page intentionally left blank.

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 39
 All rights reserved.

7 Debug Instrumentation and Visibility Subsystem (DIVS)

7.1 Instrumentation and Visibility Subsystem Overview
The DIVS is basically a network or interconnect that allows trace data to flow from various sources to the 674

trace data sink (generally the DTS). The DIVS architecture provides a rich set of features that can be 675

utilized to effect this purpose: 676

• Trace protocols such as the System Trace Protocol (STP) that provide a standard encoding for 677

trace from multiple different HW and SW sources. 678

• Trace merge protocols such as the Trace Wrapper Protocol (TWP) that can be used to combine 679

many different trace streams into a single stream of data for easy transport management. 680

• Trace network protocols like the Gigabit Trace (GbT) and network adaptor specifications that 681

define how trace data should be formatted for transport over standard network links. 682

7.2 System Trace Protocol (STP) Specification
Real-time trace has become an indispensable tool for debugging and optimizing embedded systems. This 683

trace can come from a variety of sources, including: 684

• Trace components monitoring processor instruction and data flow. 685

• Instrumentation in the software running on a processor. 686

• Trace components monitoring activities outside the processor. 687

Each trace source has its own protocol, and these protocols share a number of common required features. 688

The System Trace Protocol (STP) is a base protocol which provides these common features. 689

The advantages of this shared approach are: 690

• Reuse reduces the time and cost of designing new protocols, as well as IP and tools supporting 691

them. 692

• Commonality of features enables greater interoperability, for example by providing time 693

correlation between multiple trace streams. 694

• A robust base protocol ensures common protocol design mistakes are avoided. 695

The STP specifications were developed to leverage the advantages listed above. STP was not intended to 696

supplant or replace the highly optimized protocols used to convey data about processor program flow, 697

timing or low-level bus transactions. It is anticipated that STP data streams will exist side by side with 698

these optimized protocols as part of a complete debug system. 699

Architecture Overview for Debug Version 1.3
 19-Mar-2021

40 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

7.2.1 Relationship to MIPI Debug Architecture
Figure 21 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 700

STP specifications. 701

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

STP

 702

Figure 21 STP in the MIPI Debug Architecture

7.2.2 Protocol Overview
STP was developed as a generic base protocol that can be shared by multiple, application-specific trace 703

protocols. STP was not intended to supplant or replace the highly optimized protocols used to convey data 704

about processor program flow, timing or low-level bus transactions. STP is designed so that its data streams 705

coexist with these optimized protocols as part of a complete debug system. The STP protocol is now in its 706

second generation (STPv2) which is backward compatible with the first generation. 707

STPv2 includes the following features: 708

• A trace stream comprised of 4-bit frames (nibbles) 709

• Support for merging trace data from up to 65536 independent data sources 710

• Up to 65536 independent data Channels per Major Source 711

• Basic trace data messages that can convey 4, 8, 16, 32, or 64-bit wide data 712

• Time-stamped data packets using one of several time stamp formats including: 713

• Gray code 714

• Natural binary 715

• Natural binary delta 716

• Export buffer depth (legacy STPv1 timestamp that requires DTC support) 717

• Data packet markers to indicate packet usage by higher-level protocols 718

• Flag packets for marking points of interest (for higher-level protocols) in the stream 719

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 41
 All rights reserved.

• Packets for aligning time stamps from different clock domains 720

• Packets for indicating to the DTC the position of a trigger event, which is typically used to control 721

actions in the DTC; for example, to control trace capture 722

• Packets for cross-synchronization events across multiple STP sources 723

• Support for user-defined data packets 724

• Facilities for synchronizing the trace stream on bit and message boundaries 725

• Optional support for data integrity protection of the trace stream 726

• Add data integrity package (DIP) to facilitate error detection over noisy connections 727

• Platform Description ID (PDID) packet types to carry payload information identifying the 728

platform the trace was captured and describe the contained trace data formats to enable processing 729

tools to auto-detect the format of the individual traces received from the trace stream itself. 730

Figure 22 shows the conceptual hierarchy of the different terms described in this specification. The clouds 731

are elements from the data model. 732

A stream of STP packets generally contains data from a number of different Major Sources, which in turn 733

may each have a number of different Channels. These two levels of hierarchy may be used, for example, to 734

distinguish different software applications (Channels) running on different processors (Major Sources). 735

Channel Channel Channel Channel

Major Source

STP stream

Data

Marker Flag

User, PDID

Error

Trigger

Time sync

Major Source

Data
Integrity

Protection

 736

Figure 22 Conceptual Hierarchy of STP Major Sources and Channels

Figure 23 shows an example of a target system that utilizes a module implementing the System Trace 737

Protocol. In this example, the STP data is transferred to the DTC across a PTI. 738

Architecture Overview for Debug Version 1.3
 19-Mar-2021

42 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Debug & Test Target (DTT)

System Trace Module

Debugger

PC or
Workstation

Debug & Test
Controller (DTC)

Debug & Test
System (DTS)

Target System (TS) with
Single DTT

Debug
Comm.

Link

Serial, parallel,
Etherrnet, USB

connection

P
T
I

Trace
Cable

Trace
Export

Trace
Format

Trace
Collect

Debug and Test Interface (DTI)

Parallel Trace Interface (PTI)

 739

Figure 23 STM in a Target System

The timing diagram in Figure 24 shows an example of the STP packets that might be transferred to the 740

DTC in such a system. This example shows the end of a synchronization sequence followed by a series of 741

16-bit data packets on Channel 4 of Trace Source (Major Source) 3. 742

Time

1111 1111 1111 0000 1111 0000 0100 0001 00000000

0011 0000 0100 0101 0001 0011 0100 01010010

0011

End of ASYNC VERSION = 4 M8 = 3

C8 = 4 D16 = %x1234 D16

 743

Figure 24 Example STP Packet Sequence

7.2.3 Detailed Specification
In addition to the current version 2.2 of the MIPI STP Specification, version 2.3 is under development in 744

the MIPI Debug Working Group and is expected to be available in 2021. Version 2.3 will add a new 745

Platform Description ID packet for identifying the correct decoder(s). 746

For details of MIPI STP, consult the document: MIPI Alliance Standard for System Trace Protocol 747

Specification Version 2.2, [MIPI03]. This specification is available to MIPI members and to the public 748

through the MIPI website. The public version of the specification can be found at: 749

http://resources.mipi.org/mipi-download-system-trace-protocol. 750

http://resources.mipi.org/mipi-download-system-trace-protocol

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 43
 All rights reserved.

7.3 Trace Wrapper Protocol (TWP) Specification

7.3.1 Overview
The Trace Wrapper Protocol (TWP) enables multiple source trace streams to be combined (merged) into a 751

single trace stream. The basic principle is that the source trace streams (byte streams) can be assigned 752

system unique IDs. A wrapping protocol is then used to encapsulate all the streams in the system 753

identifying them with these IDs. This protocol also includes provisions for synchronizing the merged 754

output stream and providing inert packets for systems that cannot disable continuous export of data. It has 755

optional facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event, 756

which is typically used to control actions in the DTC, for example to control trace capture. 757

This specification is complementary to the MIPI Alliance Specification for Parallel Trace Interface (PTI), 758

[MIPI02], and to the MIPI Gigabit Debug network adaptor specifications, such as [MIPI07]. It is intended 759

to be used by any module or layer that merges multiple trace data streams. The ultimate destination of the 760

merged streams might include: 761

• Host debug tools via a dedicated trace export interface (PTI) 762

• On-chip capture into a dedicated trace buffer 763

• On-chip capture into general system memory 764

• Host debug tools via a functional network (GbD) 765

This specification is also complementary to the MIPI Alliance Specification for System Trace Protocol, 766

[MIPI03], enabling a trace output to be shared between sources that implement STP and logic that 767

implements other trace protocols. 768

This specification is equivalent to the Trace Formatter Protocol specified in the Arm® CoreSight™ 769

Architecture Specification, [ARM01]. 770

Architecture Overview for Debug Version 1.3
 19-Mar-2021

44 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

7.3.2 Relationship to MIPI Debug Architecture
Figure 25 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 771

TWP specification. 772

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

TWP

 773

Figure 25 TWP in the MIPI Debug Architecture

7.3.3 TWP Features
The features of TWP are summarized below: 774

• Allows up to 111 source trace streams to be represented as a single stream and later separated by 775

either hardware or software. 776

• Requires low additional bandwidth. 777

• Minimizes the amount of on-chip storage required to generate the protocol. 778

• Permits any source trace stream to be used, regardless of its data format. 779

• Is suitable for high-speed real-time separation of the component trace streams. 780

• Is a bit stream that can be exported using any transport that supports bit stream data. 781

• Can be efficiently stored to memory whose width is a power of two for later retrieval. 782

• Has facilities for synchronization points so decode can be accomplished even if the start of the 783

trace is lost. 784

• Has facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event, 785

which is typically used to control actions in the DTC, for example to control trace data capture. 786

• Has facilities for padding the data output for scenarios where a transport interface cannot be idled, 787

and valid data is not available. 788

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 45
 All rights reserved.

7.3.4 TWP Description
Each trace source, whose output is to be wrapped by TWP, is given a 7-bit trace source ID. The trace 789

consists of a number of Trace Fragments, each consisting of an ID indicating the source of the trace and at 790

least one byte of data. 791

If the source trace stream cannot be naturally represented using a stream of bytes, then an additional 792

protocol specific to the source trace stream has to be implemented in order to convert the source trace 793

stream into a stream of bytes. 794

7.3.5 Layers
TWP is split into the following layers: 795

• Layer T1: Flow Control. This layer enables TWP to be used over a connection which requires 796

continuous communication, for example PTI in situations where the clock cannot be stopped. 797

• Layer T2: Alignment Synchronization. This layer enables the alignment of frames in Layer T3 to 798

be determined. 799

• Layer T3: Data. This layer conveys trace data using 128-bit frames. 800

Trace sink
without flow

control

T3

e.g. PTI continuously
supplied with data

T1

T2

Trace sink
with flow control

Trace sink
with alignment

e.g. PTI where clock
can be stopped.

e.g. storage in
memory on 16-byte
boundaries.

Interleaved
trace streams

 801

Figure 26 Example Use Cases for Layers T1, T2 and T3

7.3.6 Detailed Specification
For details of MIPI TWP, consult the document: MIPI Alliance Specification for Trace Wrapper Protocol, 802

[MIPI04] and [MIPI04a]. This specification is available to MIPI members and to the public through the 803

MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-twp-804

download. 805

http://resources.mipi.org/mipi-twp-download
http://resources.mipi.org/mipi-twp-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

46 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

7.4 Gigabit Trace (GbT)

7.4.1 Summary
One of the primary functions of the DIVS is to provide means to organize on-chip data and transport it to 806

an external Debug and Test System for analysis. Historically, this data path used dedicated interfaces on the 807

SoC boundary (the Parallel Trace Interfaces introduced earlier). In some system scenarios, however, it is 808

desirable to transport the trace data via networks and interfaces which are shared with traffic sent by the 809

mission mode (normal) functions of the device. Leveraging functional interfaces and transports for debug 810

enhances the capabilities of the debug systems in scenarios where debug over dedicated interfaces is 811

difficult or impossible. Gigabit Trace (GbT) focuses on the sharing of standard communication channels for 812

debug. 813

The GbT architecture is a layered system. The GbT System facilitates packaging trace data as a stream of 814

GbT Network messages suitable for transport over a shared network and/or interconnect. It defines a 815

network independent set of data packets that are shared (but not required) by all network transports. 816

A Gigabit Trace system also requires a Network Adaptor that consumes GbT Network Messages and 817

produces a message stream compatible with the targeted transport. The network adaptor layers are generally 818

called Gigabit Debug Adaptors since they often support other network capable debug protocols like 819

SneakPeek. The goal is to define MIPI Gigabit Debug network adaptor specifications for all the common 820

transports found in different systems. 821

7.4.2 Relationship to MIPI Debug Architecture
Figure 27 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 822

Gigabit Trace specifications. 823

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function

Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

Gigabit
Trace

 824

Figure 27 Gigabit Trace and the MIPI Debug Architecture

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 47
 All rights reserved.

7.4.3 Gigabit Trace System Overview
The TWP has facilities to readily adapt trace streams for export over the high-speed network interfaces 825

present on different systems. As these functional interfaces are now supporting extremely high data rates, 826

the term Gigabit Trace (GbT) has been coined. In a GbT system, the trace stream can co-exist on the 827

network link with other (functional) data traffic and the debug tooling is an application layer client on the 828

network. This approach enables trace capture in fielded systems where dedicated debug connections are not 829

available. It also enables trace capture in the DTS using any host system (such as a high-performance PC) 830

that supports a high-speed network interface and can store data at high data rates. 831

Figure 28 and Figure 29 show a typical GbT system and the data flow in the TS and the DTS. These 832

figures are abstract functional diagrams that illustrate data flow through the system. The individual blocks 833

only define functions that likely exist in the system, not HW or SW modules with defined interfaces and 834

behaviors. 835

Trace Source Trace Source

Merge

GbT Network Adaptor

Network Stack

PHY

Arbitration

Trace Source

TWP
Frames

Multiple
Trace
Streams

Functional
Network
Traffic

GbT
Network
Messages

Application
Function

Network

Application
Function

Operating System

 836

Figure 28 Typical GbT Configuration and Data Flow (TS)

Architecture Overview for Debug Version 1.3
 19-Mar-2021

48 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Trace Client Trace Client

Demultiplex

GbT Network Adaptor

Network Stack

PHY

Trace Client

TWP
Frames

Multiple
Trace
Streams

Functional
Network
Traffic

GbT
Network
Messages

Application
Function

Network

Application
Function

Operating System

 837

Figure 29 Typical GbT Configuration and Data Flow (DTC and DTS)

Note that in the TS, the GbT data path may optionally use the low-level OS to merge trace data with other 838

(functional) network streams. This is obviously more intrusive to the system function than a direct data path 839

to the lower levels of the network stack (also shown). A more SW-intensive system might ease the 840

complexity of the HW required to support GbT and it is anticipated that both approaches will be utilized. 841

The MIPI GbT solution builds on the MIPI TWP data primitives. The MIPI GbT solution uses a GbT 842

Network Adaptor (in the TS and DTS) to isolate generic GbT from the properties of a specific Network 843

Stack. A typical GbT system might adapt trace for export over a USB interface (USB 2.0 or 3.0 depending 844

on bandwidth requirements). 845

The MIPI Debug Working Group will produce independent specifications defining how a GbT system can 846

be realized on various transport networks. These Adaptor specifications will provide the details on how to 847

map the GbT framework outlined in this Annex to specific constraints and capabilities of a particular 848

transport network. 849

7.4.4 Requirements Summary
A GbT system generally addresses the following requirements: 850

• Provides a mechanism to convey high bandwidth trace data over a transport network. 851

• Compatible with a variety of transport networks. 852

• Packages trace data streams into network-independent messages. 853

• Builds on existing network protocol specifications (referred to as the functional or transport 854

network). 855

7.4.5 Detailed Specification
The details of the Gigabit Trace framework are outlined in an annex to the MIPI Alliance Specification for 856

Trace Wrapper Protocol, version 1.1. 857

For details of the Gigabit Trace framework, consult the document: MIPI Alliance Specification for Trace 858

Wrapper Protocol, [MIPI04a]. This specification is available to MIPI members and to the public through 859

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 49
 All rights reserved.

the MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-860

twp-download. 861

7.5 STP and TWP in the DIVS
At first inspection, it might seem that STP and TWP have significant functional overlap. Both support the 862

merging of trace data from multiple trace sources. They also have facilities for stream synchronization and 863

alignment. A more detailed analysis, however, reveals that the protocols are optimized for different 864

capabilities and the differences in the protocols complement each other in a complex trace infrastructure. 865

TWP has a very uniform packet structure that is optimized for encoding and decoding interleaved byte 866

streams. The protocol can be implemented easily in HW and the ability to switch active trace streams on 867

any byte boundary decreases the amount of buffering required to support frame creation. The fixed data 868

frame also simplifies mapping TWP to some other transport protocol payload (the GbT scenario). TWP is 869

thus ideal for trace data paths where many high-bandwidth trace sources are merged before export on a 870

high-performance link. 871

These high-throughput requirements extend into the DTS as well. The fixed frames of TWP enable efficient 872

decode of the captured trace stream. The DTC hardware can remove lower-level link maintenance packets 873

(synchronization and padding) before the higher-level data is stored. This type of filtering is highly 874

desirable when supporting systems where constraints dictate that the trace interface cannot be halted (e.g., a 875

multi-point data mode PTI). 876

While STP also supports merging of trace streams, the protocol also provides features that assist high-level 877

trace protocol (e.g. time stamps, frame markers, and hierarchical source IDs). These features greatly 878

decrease the complexity at the trace source. These sources do not have to worry about supporting their own 879

methods of time stamping or frame marking within their own protocols. The hierarchical IDs enable 880

support for complex trace topologies (e.g., software message traces from multiple processes on multiple 881

CPUs). Supporting these features increases the complexity of a module merging the data from various 882

sources into an STP stream. Since the interleaving boundary for STP is the non-fixed STP message 883

boundary, the modules implementing STP might require significant buffering and pipelining to achieve 884

high throughput. STP is thus ideal for trace data paths that might not have extreme bandwidth requirements 885

but support many trace sources (such as SW threads or small HW modules) generating trace. 886

http://resources.mipi.org/mipi-twp-download
http://resources.mipi.org/mipi-twp-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

50 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Figure 30 shows an example of a DIVS architecture that uses the various MIPI protocols and specifications 887

in a layered approach to trace export. SW and HW messages, encoded as STP messages (comprised of STP 888

packets) are transferred on the trace interconnect. High-bandwidth processor trace byte streams are also 889

present on this interconnect. These various trace byte streams are interleaved using TWP and the packets 890

are either exported directly to the pins or collected into GbT Network Messages for adaptation to a 891

functional network protocol. 892

CPU Core

Processor Trace

CPU Core

Processor Trace

SW
Instrumentation

Module

HW
Instrumentation

Module

Trace Wrapper
Module

Network Transport
Module

Network
Adaptor

STP

Proprietary
Trace

Packets

STP

Proprietary
Trace

Packets

TWP

Network Protocol

System Interconnect

Trace
Interconnect

Pin
Export
Module

TWP

PTI

Debug and
Test Controller

Network

Network
Packet

 893

Figure 30 Example Trace Architecture

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 51
 All rights reserved.

7.6 System Software Trace (SyS-T) Specification

7.6.1 Overview
System Software Trace (SyS-T) is a format for transporting software traces and debugging information 894

between a target system (TS) running embedded software, and a debug and test system (DTS), typically a 895

computer running one or more debug and test applications (debuggers and trace tools). SyS-T is primary an 896

OS independent software tracing protocol, but it can also be used on bare-metal or OS environments. 897

The purpose of SyS-T is to provide a common trace format to exchange information between a TS and a 898

DTS. SoCs contain many different software agents. For different operating systems there exist different, 899

specific tracing solutions. There is no common solution existing across different software/firmware and 900

hardware agents. MIPI SyS-T is aiming to fill this gap. 901

7.6.2 Relationship to MIPI Debug Architecture
Figure 31 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 902

SyS-T specification. 903

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T
Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function
Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

SyST

 904

Figure 31 SyS-T in the MIPI Debug Architecture

Architecture Overview for Debug Version 1.3
 19-Mar-2021

52 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

7.6.3 Usage
SyS-T provides a platform independent general purpose trace protocol and software instrumentation library. 905

SyS-T defines a variety of trace messages ranging from simple UTF-8 based text and printf() style 906

messages to complex binary data payloads. SyS-T is suitable for trace data generation from non-OS, bare-907

metal environments, as well as OS kernel and user mode software. The SyS-T specification enables vendor 908

independent trace debug tools development for environments that don’t already provide an established trace 909

standard. It does so by separating the trace generation on the TS from the decoding on the DTS into 910

independent tasks. 911

Today’s platforms or SoCs contain multiple agents that are producing traces send from a TS. Different 912

agents can be seen as independent from each other regarding trace generation. Additional logic like a trace 913

arbiter is used to combine the agents trace data fragments together into a single platform level data stream. 914

SyS-T does not replace the trace arbiter step. SyS-T is used directly inside the agents for generating the 915

SyS-T trace data the gets send to the trace arbiter. A system implementing SyS-T therefore owns one to 916

many independent SyS-T instances, depending on how many agents are using the SyS-T tracing method. 917

Application Processor

Application Software

Trace Agent Trace Agent

OS/Kernel Software

Trace Agent Trace AgentTrace Agent Trace Agent

Other Trace Agents
(Software or Hardware)

Transport to DTS

SyS-T Other Protocol SyS-T SyS-TOther Protocol Other Protocol

Trace Aggregator

 918

Figure 32 SyS-T Instances in a Target System

7.6.4 SyS-T Instrumentation Library
The SyS-T Data Protocol generation is provided by a portable “C”-Language based software library called 919

SyS-T Instrumentation Library [MIPI11]. The SyS-T Instrumentation Library provides a function style API 920

(referred to as the SyS-T API) to software using pre-processor macros. This library serves as the reference 921

implementation for a SyS-T Data Protocol generator. The usage of this library is optional. Vendor-specific 922

implementations are allowed as long as the output is compatible with the SyS-T Data Protocol. 923

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 53
 All rights reserved.

7.6.5 Detailed Specification
In addition to the current version 1.0 of the MIPI SyS-T Specification, version 1.1, is under development in 924

the MIPI Debug Working Group and is expected to be available in 2021. Version 1.1 will include an 925

additional MIPI SyS-T packet type to support sending pure binary data packets. 926

For details of SyS-T technology, consult: MIPI Alliance Specification for System Software Trace (SyS-T), 927

[MIPI10]. This specification is available to MIPI members and to the public through the MIPI website. The 928

public version of the specification can be found at: http://resources.mipi.org/mipi-sys-t-download. In 929

addition to the specification, the Open Source code for the SyS-T Instrumentation Library with an example 930

implementation is posted on GitHub, [MIPI11]. 931

http://resources.mipi.org/mipi-sys-t-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

54 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

This page intentionally left blank.

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 55
 All rights reserved.

8 Debug Network Interfaces (DNI)

8.1 Gigabit Debug (GbD) Specification

8.1.1 Overview
Gigabit Debug (GbD) is the blanket terminology for mapping debug capabilities to a particular functional 932

network. Unlike NIDnT, the network interface and protocol stack function normally. Gigabit Debug just 933

defines how to adapt the SneakPeek and Gigabit Trace functions so that they can co-exist with other 934

network traffic (as normal application layer functions). While the goal of a GbD system is to minimize 935

intrusiveness of debug on regular system functions, it is acknowledged that some debug capabilities (like 936

trace) may require significant network bandwidth and will thus have the potential for significant impact to 937

the normal system. 938

The current effort focuses on mapping the network independent MIPI SneakPeek Protocol and Gigabit 939

Trace framework to networks commonly found in many systems. Some of the items addressed in Gigabit 940

Debug Specifications include: 941

• Connection/session initialization and de-initialization 942

• Network link management 943

• Packaging of MIPI protocol messages into network messages 944

• Mapping aspects of Basic Debug and Trace functionality to network features 945

• Network error handling 946

Figure 33 shows how the Gigabit Debug Adaptor specifications complement the specific MIPI debug 947

protocol specifications. 948

Gigabit
Debug

Specifications

PHY PHY

SPP Network
Adaptor

SneakPeek
Driver

Network
Stack

SPP Network
Adaptor

Network
Stack

SneakPeek
Command

Engine

System
& Debug

Memory Maps

DTS TS

Memory
Agents

Debug
Applications

Debug
Applications

Debug
Applications

Debug
Applications

Debug
ApplicationsTrace Clients

GbT
Driver

GbT Network
Adaptor

Debug
Applications

Debug
ApplicationsTrace Sources

Trace
Infrastructure

GbT Network
Adaptor

 949

Figure 33 Gigabit Debug Functional Block Diagram

Architecture Overview for Debug Version 1.3
 19-Mar-2021

56 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

One of the fundamental features of GbD functionality is that it co-exists with non-debug network clients 950

and can operate quite effectively in multi-node networks that are commonplace today. Figure 34 illustrates 951

how GbD and non-debug network traffic are integrated in such networks. 952

DTS TS

Network
Controller

Network
Controller

Network
Controller

SneakPeek
Command
Engine #1

Other
Network
Client(s)

Gigabit
Trace #1

SPP
Network
Adaptor

GbT
Network
Adaptor

SneakPeek
Command
Engine #2

SPP
Network
Adaptor

Gigabit
Trace #2

GbT
Network
Adaptor

Network
Controller

Trace
Application
(GbT #2)

Debug
Application(s)

Other
Network
Client(s)

Network

GbT
Network
Adaptor

SPP
Network
Adaptor

SPP
Network
Adaptor

Network
Driver

Network
Driver

Network
Driver

Network
Controller

Trace
Application
(GbT #1)

GbT
Network
Adaptor

Network
Driver

DTS #1

DTS #2

TS #2

TS #1

 953

Figure 34 GbD in a Multiple-Node Network

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 57
 All rights reserved.

8.1.2 Relationship to MIPI Debug Architecture
Figure 35 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 954

Gigabit Debug specifications. 955

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function

Interfaces

High Perf
Debug I/Fs

Debug Network Interfaces

Gigabit
Debug

 956

Figure 35 Gigabit Debug and the MIPI Architecture

8.1.3 Detailed Specifications
Currently, the Gigabit Debug Specification addresses the following functional networks: 957

• USB 958

• For details of the Gigabit Debug adaptors for USB, consult the document: MIPI Alliance 959

Specification for Gigabit Debug for USB, [MIPI07]. This specification is available to MIPI 960

members and to the public through the MIPI website. The public version of the specification can 961

be found at: http://resources.mipi.org/mipi-gbd-usb-download. 962

• Supports both a MIPI-defined extension to standard USB Descriptors and the Debug Device 963

Class Descriptor as given by the Device Class Specification for Debug, [USB01]. 964

• TCP and UDP over Internet Protocols 965

• For details of the Gigabit Debug adaptors for Internet Protocol (IP) sockets, consult the 966

document: MIPI Alliance Specification for Gigabit Debug for Internet Protocol Sockets, 967

[MIPI08]. This specification is available to MIPI members and to the public through the MIPI 968

website. The public version of the specification can be found at: http://resources.mipi.org/mipi-969

gigabit-debug-for-ips-download. 970

Other functional networks will be addressed in future Gigabit Debug Specifications. 971

http://resources.mipi.org/mipi-gbd-usb-download
http://resources.mipi.org/mipi-gigabit-debug-for-ips-download
http://resources.mipi.org/mipi-gigabit-debug-for-ips-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

58 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

8.2 Debug for I3C

8.2.1 Overview
The Debug for I3C Specification describes methods for using the Improved Inter Integrated Circuit (I3C) as 972

a minimal-pin interface to transport debug controls and data between a DTS and a TS. Current debug 973

solutions, such as JTAG [IEEE01] and Arm® Serial Wire Debug [ARM01], are statically structured which 974

leads to limited scalability regarding the accessibility of debug components/devices. Also, when looking at 975

the new requirements of near future technologies, such as 5G, and environments/markets, such as IoT, there 976

are gaps that need to be addressed. The Debug for I3C Specification targets these gaps and shortcomings by 977

using the capabilities of I3C to handle debug connectivity on buses that are dedicated for debug or shared 978

with functional transfers, handling the debug network topology in a dynamic fashion. 979

The Debug for I3C Specification is designed in accordance with either v1.0 or greater of the MIPI 980

Specification for I3C [MIPI13], or v1.0 or greater of the I3C Basic Specification [MIPI14]. 981

Implementations can be used with I3C interfaces that implement either specifications. The Debug for I3C 982

Specification relies on the multi-controlling and multi-drop capabilities of the I3C Specification. The 983

Debug for I3C Specification uses the existing common command codes (CCC) as defined by [MIPI13] as 984

well as defining debug-specific CCC to handle debug communication and trace messaging. In-band 985

interrupts (IBI) are also used and debug-specific Mandatory Data Byte (MDB) values are defined as a 986

method of debug event and other communications initiated by the TS. 987

The Debug for I3C Specification allows for different designs where the I3C bus could be shared with non-988

debug communication. Whether the I3C bus is shared or dedicated for debug, the specification also allows 989

for different DTS access points and allows for an externally connected DTS. The ability for an I3C bus to 990

have multiple Controller-capable devices allows the DTS to be connected as either the Primary Controller 991

(usually with dedicated debug I3C buses) or as a Secondary Controller (usually with shared I3C buses). 992

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 59
 All rights reserved.

8.2.2 Relationship to MIPI Debug Architecture
Figure 36 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 993

Debug for I3C Specification. 994

System Functional/Application Modules SW
Instrumentation

S
ystem

Trace

C
ore

Trace

O
ther

Trace

H
W

Instrum

ent
ation

C
ore

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

M
em

/R
eg

A
ccess

Trace
C

onfig

O
ther

D
ebug

B
oundary S

can
A

nd B
IS

T

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

S
ystem

M

em
ory

S
ystem

N

etw
ork(s)

D
ebug

B
uffer

B
us

Interfaces

S
can

Interfaces

D
ebug

E
xport

Interfaces

System Interconnect

C
ore

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug
Comms I/Fs

High Performance
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and

Debug I/Fs

S
ystem

Function

Interfaces
High Perf

Debug I/Fs

Debug Network Interfaces

Debug
for I3C

 995

Figure 36 Debug for I3C in the MIPI Debug Architecture

8.2.3 Target System Implementation Overview
The Debug for I3C Specification allows for variations of adaptors for the different debug protocols. This 996

specification maps the following protocols: 997

• SneakPeek: Used for debug communication with a SneakPeek Command Engine (TinySPP). 998

• TWP: Used for output of trace formatted using Trace Wrapper Protocol. 999

• STP: Used for output of trace formatted using System Trace Protocol. 1000

• Simplified Address-Mapped (SAM): Simple address-mapped access to TS resources. 1001

• UART: Virtual UART for character-oriented communication, e.g., scanf() and printf(), or a 1002

GDB debug monitor. 1003

• ImpDef: Implementation-Defined communication protocol. 1004

The primary function of these adaptors (referred to as a Network Adaptor) is facilitating the transport of 1005

data between debug application layer entities at opposite ends of an I3C bus. The Network Adaptor maps 1006

data objects that have meaning at the debug application layer to transport mechanisms provided by an I3C 1007

bus. The Network Adaptor takes data from a debug application layer function and passes it to an I3C 1008

protocol stack, or vice versa. This mapping preserves the relevant properties of the application data. A 1009

Network Adaptor also provides control functions connected with system setup, initialization, and operation. 1010

Architecture Overview for Debug Version 1.3
 19-Mar-2021

60 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Figure 37 shows how the Debug for I3C Specification complements the specific MIPI debug protocol 1011

specifications with Applications and Debug Protocols above it, and I3C transport networks below it. 1012

I3C Link Layer I3C Link Layer

SPP Network
Adaptor

SneakPeek
Driver

I3C Transport &
Network Layer

SPP Network
Adaptor

I3C Transport &
Network Layer

SneakPeek
Command

Engine

System
& Debug

Memory Maps

DTS TS

Memory
Agents

Debug
Applications

Debug
Applications

SneakPeek
Application(s)

Debug
Applications

Debug
Applications

Trace
Application(s)

Trace
Driver

TWP/STP
Network
Adaptor

Debug
Applications

Debug
ApplicationsTrace Sources

Trace
Infrastructure

TWP/STP
Network
Adaptor

Debug
Applications

Debug
ApplicationsApplication(s)

Debug
Applications

Debug
ApplicationsSources

InfrastructureInfrastructureInfrastructure

 Network
Adaptor
 Network
Adaptor
 Network
Adaptor

Driver nDriver nDriver

Network
Adaptor
Network
Adaptor
Network
Adaptor

Debug for I3C
Specifications

 1013

Figure 37 Debug for I3C Functional Block Diagram

Figure 38 shows an example Target System. This figure shows the standard I3C Target behavior (colored 1014

yellow), the global debug functions (colored red), four Network Adaptors (colored purple), and the 1015

accompanying debug functions (colored green for functions that are typically hardware and blue for those 1016

that are typically software). 1017

The Network Adaptors in this system are: 1018

• Index 0 is a SneakPeek Protocol (SPP) Network Adaptor transporting bytes formatted as 1019

Command and Response Packets for a Command Engine using the TinySPP style. 1020

• Index 2 is a System Trace Protocol (STP) Network Adaptor transporting data from an STM which 1021

contains trace produced by a SyS-T client. 1022

• Index 4 is a Simplified Address-Mapped (SAM) Network Adaptor transporting bytes formatted as 1023

Commands and Responses for a Debug Engine using the SAM Protocol. 1024

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc. 61
 All rights reserved.

• Index 5 is a Trace Wrapper Protocol (TWP) Network Adaptor transporting trace data from two 1025

trace sources that has been combined into a single stream using TWP. 1026

• Index 14 is a UART Network Adaptor carrying character streams to and from scanf() and 1027

printf() functions in an application program. 1028

I3C Bus

Debug
Actions

I3C Network & Transport Layer (i.e., I3C Target)

SneakPeek
Network Adaptor

Index 0

STP
Network Adaptor

Index 2

TWP
Network Adaptor

Index 5

UART
Network Adaptor

Index 14

SneakPeek
Engine STM TWP Formatter scanf()

printf()

Trace
Source

Trace
SourceSyS-T Software

SAM
Network Adaptor

Index 4

SAM Debug
Engine

Debug-Specific
Handling

 1029

Figure 38 Example Target System with Multiple Network Adaptors

8.2.4 Detailed Specification
For details of the MIPI Debug for I3C, consult the document: MIPI Alliance Specification for Debug for 1030

I3C, [MIPI12]. This specification is available to MIPI members and to the public through the MIPI 1031

website. The public version of the specification can be found at: https://resources.mipi.org/mipi-debug-i3c-1032

download. 1033

https://resources.mipi.org/mipi-debug-i3c-download
https://resources.mipi.org/mipi-debug-i3c-download

Architecture Overview for Debug Version 1.3
 19-Mar-2021

62 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

This page intentionally left blank.

Version 1.3 Architecture Overview for Debug
19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

Participants
The following list includes those persons who participated in the Working Group that developed this
Supporting Document and who consented to appear on this list.

Bruce Ableidinger, SiFive
Christian Boenig, Lauterbach GmbH
Enrico Carrieri, Intel Corporation
Gary Cooper, Texas Instruments Incorporated
John Horley, Arm Limited
Jason Kirschenbaum, Intel Corporation
Rolf Kuehnis, Intel Corporation

Stephan Lauterbach, Lauterbach GmbH
Jason Peck, Texas Instruments Incorporated
Radu Pitigoi-Aron, Qualcomm Incorporated
Matthew Schnoor, Intel Corporation
Eric Upson, Intel Corporation
Dan Wetzel, Western Digital Technologies, Inc.

Past contributors to v1.2:

Eddie Ashfield, MIPI Alliance (Staff)
Enrico Carrieri, Intel Corporation
Gary Cooper, Texas Instruments Incorporated
Patrik Eder, Intel Corporation
John Horley, ARM Limited
Rolf Kuehnis, Intel Corporation

Stephan Lauterbach, Lauterbach GmbH
Andrea Martin, Lauterbach GmbH
Laura Nixon, MIPI Alliance (Staff)
Jason Peck, Texas Instruments Incorporated
Norbert Schulz, Intel Corporation

Architecture Overview for Debug Version 1.3
 19-Mar-2021

 Copyright © 2014–2021 MIPI Alliance, Inc.
 All rights reserved.

This page intentionally left blank.

	Contents
	Figures
	Tables
	Release History
	1 Overview
	1.1 Scope

	2 Terminology
	2.1 Definitions
	2.2 Abbreviations
	2.3 Acronyms
	2.4 Use of Inclusive Language

	3 References
	4 Debug System
	4.1 System Framework
	4.2 The MIPI Debug and Test System

	5 Debug Physical Interfaces (DPI)
	5.1 Parallel Trace Interface (PTI) Specification
	5.1.1 Trace and Debug Overview
	5.1.2 Relationship to MIPI Debug Architecture
	5.1.3 Trace Scenarios
	5.1.3.1 Multi-Point Trace Connections

	5.1.4 Detailed Specification

	5.2 High-speed Trace Interface (HTI) Specification
	5.2.1 Overview
	5.2.2 Relationship to the MIPI Debug Architecture
	5.2.3 HTI Details
	5.2.4 Detailed Specification

	5.3 Debug Connector Recommendations
	5.3.1 Dedicated Debug Connector Overview
	5.3.2 Relationship to the MIPI Debug Architecture
	5.3.3 Basic Debug Connectors
	5.3.4 High-Speed Parallel Trace Connectors
	5.3.5 Detailed Documentation

	5.4 Narrow Interface for Debug and Test (NIDnT) Specification
	5.4.1 Overview
	5.4.2 Relationship to the MIPI Debug Architecture
	5.4.3 NIDnT Details
	5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes
	5.4.5 Functional Interfaces that are NIDnT Candidates
	5.4.6 Detailed Specification

	6 Debug Access and Control Subsystem (DACS)
	6.1 IEEE 1149.7 Debug and Test Interface Specification
	6.1.1 Relationship to MIPI Debug Architecture
	6.1.2 Detailed Specification

	6.2 SneakPeek Specification
	6.2.1 Relationship to MIPI Debug Architecture
	6.2.2 Overview
	6.2.3 Protocol Styles
	6.2.4 Detailed Specifications

	7 Debug Instrumentation and Visibility Subsystem (DIVS)
	7.1 Instrumentation and Visibility Subsystem Overview
	7.2 System Trace Protocol (STP) Specification
	7.2.1 Relationship to MIPI Debug Architecture
	7.2.2 Protocol Overview
	7.2.3 Detailed Specification

	7.3 Trace Wrapper Protocol (TWP) Specification
	7.3.1 Overview
	7.3.2 Relationship to MIPI Debug Architecture
	7.3.3 TWP Features
	7.3.4 TWP Description
	7.3.5 Layers
	7.3.6 Detailed Specification

	7.4 Gigabit Trace (GbT)
	7.4.1 Summary
	7.4.2 Relationship to MIPI Debug Architecture
	7.4.3 Gigabit Trace System Overview
	7.4.4 Requirements Summary
	7.4.5 Detailed Specification

	7.5 STP and TWP in the DIVS
	7.6 System Software Trace (SyS-T) Specification
	7.6.1 Overview
	7.6.2 Relationship to MIPI Debug Architecture
	7.6.3 Usage
	7.6.4 SyS-T Instrumentation Library
	7.6.5 Detailed Specification

	8 Debug Network Interfaces (DNI)
	8.1 Gigabit Debug (GbD) Specification
	8.1.1 Overview
	8.1.2 Relationship to MIPI Debug Architecture
	8.1.3 Detailed Specifications

	8.2 Debug for I3C
	8.2.1 Overview
	8.2.2 Relationship to MIPI Debug Architecture
	8.2.3 Target System Implementation Overview
	8.2.4 Detailed Specification

	Participants

