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1 Overview 

1.1 Scope 
Recent technological developments have resulted in a quantum leap in the complexity of SoCs. Systems 1 

that were formerly deployed on one or more PCBs are now being instantiated as single discrete devices. 2 

While this trend is in general a boon to manufacturers and consumers of various systems, it has greatly 3 

increased the complexity of system debug and optimization. Signals and interfaces that used to be visible at 4 

test points on a PCB are now deeply embedded inside a SoC. The use of tried and true methods of probing 5 

buses and signals with dedicated Debug and Test equipment is now virtually impossible. 6 

This increase in debug complexity is being addressed by IP vendors, SoC developers, OEMs and tools 7 

vendors. New technologies are being deployed that provide the visibility required in these complex and 8 

deeply embedded designs. In order to maximize the utility and efficiency of debug, converging on common 9 

interfaces and protocols used by these new technologies is essential.  10 

To meet this need, the MIPI Debug Working Group (Debug WG) are developing a portfolio of standards 11 

and other documents that address the particular needs of debug. Some of the areas of focus are listed below. 12 

• Minimizing the pin cost and increasing the performance of the basic debug interface 13 

• Increasing the bandwidth, capability and reliability of the high-performance interfaces used to 14 

export high bandwidth, unidirectional debug data (e.g., processor trace data) to the debug tools 15 

• Deploying debug connectors that are physically robust and have the performance required for the 16 

high bandwidth demands of modern debug technologies 17 

• Developing generic trace protocols that allow many different on chip trace sources to share a 18 

single trace data flow to the debug tools 19 

• Maximizing debug visibility in fielded systems by reusing some of the functional 20 

interfaces/connectors for debug 21 

• Utilizing the new high bandwidth functional interfaces being deployed on various systems as a 22 

transport for debug 23 

This document provides an overview of the efforts to address these goals and provides summaries of the 24 

documents that address them in detail. 25 
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2 Terminology 

2.1 Definitions 
1149.1: Short for IEEE 1149.1. See [IEEE01]. 26 

1149.7: Short for IEEE 1149.7. See [IEEE02]. 27 

Application Function: All functions of the TS other than Debug and Test Functions. 28 

Application Processor: A programmable CPU (or CPU-based system on a chip (SoC) which may include 29 

other programmable processors such as DSPs), primarily, but not necessarily exclusively, programmed to 30 

coordinate the application processing and user interface processing. 31 

Application Software: Used here to mean the target resident code that runs on the target processor. This 32 

includes the operating system as well as the program(s) running with the OS. 33 

Basic Debug Communication: Debug communication needed through an 1149.1 (or equivalent) port only 34 

to manage basic debug communication functions such as run control, hardware breakpoints and 35 

watchpoints, and examining system state. 36 

Boundary Scan: A production test mechanism where interconnects between chips or logic blocks in an 37 

SoC are verified by forcing known test patterns into the system via a serial scan interface, activating a test 38 

mode, and then scanning out the resultant values to test against expected results. 39 

Built-in Self-Test (BIST): On-chip logic function that verifies all or a portion of the internal functionality 40 

of a SoC during production tests. BIST logic requires minimal interaction with external test infrastructures 41 

and speeds up verification of complex SoCs. 42 

Debug: To detect, trace, and eliminate SW mistakes. Also used to get an insight into an embedded 43 

processor system for performance measurements and debug of system level hardware. Used in this 44 

document in an inclusive way that encompasses stop/start/break/step debugging as well as non-halting 45 

methods such as trace. 46 

Debug Access and Control Subsystem (DACS): The subsystem that provides a path for the DTS to obtain 47 

direct access to application visible system resources (registers and memory).  48 

Debug and Test Controller (DTC): The hardware system that is responsible for managing 49 

communications with a system being debugged (the Target System). 50 

Debug and Test Function: A block of on-chip logic that carries out a debug function such as run control, 51 

providing debug access to system resources, Processor Trace, or test capability. 52 

Debug and Test Interface (DTI): The interface between the Debug and Test System (DTS) and the Target 53 

System (TS). The interface enables access to basic debug communication, the trace port, streaming data 54 

(input and output), and other debug or test capabilities. 55 

Debug and Test System (DTS): The combined HW and SW system that provides a system developer 56 

debug visibility and control when connected to a Target System. The system incorporates: 57 

• A host PC, workstation or other processing system, running the debug or test software, controlling 58 

the Debug and Test Controller. See also: Debug and Test Controller (DTC). 59 

• Debugger: The debugger software, part of the Debug and Test System. It interacts with the Debug 60 

and Test Controller and provides the (graphical) user interface for operating the Debug and Test 61 

Controller (like commanding single step, setting breakpoints, memory display/modify, trace 62 

reconstruction, etc.) 63 

Debug and Test Target (DTT): A component in the Target System that implements one or more Debug 64 

and Test Functions. The interfaces to Debug and Test Targets, where different from the DTI, are not within 65 

the scope of this specification. Examples include the debug control module on a CPU, debug interface to 66 

system memory, or the configuration interface to an on-chip trace module. 67 
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Debug Instrumentation and Visibility Subsystem (DIVS): The subsystem that provides communication 68 

and storage of data generated by debug instrumentation modules (like processor and system trace) in the 69 

target system. 70 

Debug Physical Interfaces (DPI): The chip and board level interfaces used to connect the DTC to the on-71 

chip debug functions. 72 

Double Data Rate (DDR): A parallel data interface that provides valid data on both the rising and falling 73 

edge of the interface clock. 74 

Electrical: The definition of: 75 

• Signal voltage levels, current drain and drive strength on inputs, outputs, and bi-directional pins 76 

• Rise and fall times and expected loads for device pins. 77 

Function Assignment: The mapping of functions to signals (and thus to pins as per the current Pin 78 

Assignment, e.g., Debug port pin [5] = CLK = TRACECLK.) 79 

Function Select: The method by which the Basic Debug Communication channel can be switched between 80 

use for Debug Functions and use for operations needed to configure the debug system. 81 

Gigabit Trace (GbT): A system architecture that supports transporting trace data over high-speed 82 

networks and transports. See [MIPI04a]. 83 

Gigabit Debug (GbD): A set of network-specific adaptor specifications for mapping SneakPeek and 84 

Gigabit Trace to various functional networks. 85 

Hardware Protocol: The signal protocol required for a Debug and Test Controller to correctly move 86 

control or data information between the DTC and Target System. 87 

High Bandwidth Connection: A Mating Connection, Pin Assignment and Electrical specification for full 88 

functionality, high frequency, higher pin count connection between the Target System and the Debug and 89 

Test Controller / TPA. 90 

High-speed Trace Interface (HTI): The transport specification that defines the electrical and timing 91 

characteristics of high-speed serial trace export interfaces. See [MIPI09]. 92 

IEEE 1149.7 (basic debug communication): Enhanced IEEE1149.1 Debug and Test communication 93 

standard, configurable from 4 to 2 pins. The IEEE 1149.7 interface can be viewed as providing 94 

functionality enhanced compared to 1149.1 for Basic Debug Communication and test and with fewer pins. 95 

A two-way communication channel for exclusive Debug and Test uses. See [IEEE02]. 96 

Intellectual Property (IP): any patents, patent rights, trademarks, service marks, registered designs, 97 

topography or semiconductor mask work rights, applications for any of the foregoing, copyrights, 98 

unregistered design rights, trade secrets and know-how and any other similar protected rights in any 99 

country. Any IP definition by MIPI Bylaws will supersede this local one. 100 

Low Pin Count Connection: A Mating Connection, Pin Assignment and Electrical specification for Basic 101 

Debug Communication and limited Trace Port functionality, lower frequency, low pin count connection 102 

between the Target System and the Debug and Test Controller / TPA. 103 

Mating Connection: The connector to be used, defined by specific manufacturer and part number. The 104 

required keep out area for board design to enable unobstructed connector mating. The definition of cable 105 

characteristics and terminations may include the characteristics of a connection from the point it leaves an 106 

output buffer in a chip on the target or host side, routing on a printed circuit board on the DTC or Target 107 

System side, cabling between the signal source and destination, and any connections (via connectors) in the 108 

signal path. 109 

Min-Pin: An interface for Basic Debug Communication with a minimal number of pins (2), using either 110 

IEEE 1149.7, SWD or I3C. 111 

Mode Select: A method for selecting a different Mating Connection, a different operating mode, a different 112 

electrical mode or a combination of these, for example switching between 1149.1 and 1149.7. 113 
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Narrow Interface for Debug and Test (NIDnT): A signal-mapping specification that defines how to reuse 114 

the functional interfaces commonly available on fielded systems for debug. See [MIPI05]. 115 

Nexus: An IEEE-ISTO 5001™ standard interface for embedded processor debug. The Nexus standard 116 

includes support for Basic Debug Communication as well as instruction and data tracing. See [ISTO01]. 117 

Other Debug: Debug functions not covered by 1149.1, 1149.7 or the Trace Port for example off-chip 118 

memory emulation. 119 

Parallel Trace Interface (PTI): The interface specification that defines the electrical and timing 120 

characteristics of trace export interfaces that consist of a single clock and multiple data signals. See 121 

[MIPI02]. 122 

Pin Assignment: The mapping of signals to pins, e.g., SIGNAL_NAME on pin number N. This may 123 

include restrictions on allowable pin assignments. 124 

Processor Trace: The non-intrusive capture and logging of the activity of an embedded processor and the 125 

subsystem in which the processor resides. Processor trace generally consists of one or more of the 126 

following trace types, but it is not limited to these: 127 

• Instruction (PC) Trace – Application execution flow can be reconstructed by processing the logged 128 

information 129 

• Data Trace – Data access activity is captured at the processor boundary 130 

The captured data is encoded for efficiency and this data is stored on-chip for later upload or immediately 131 

transmitted through a chip interface to an off-chip receiver. 132 

Return Test Clock (RTCK): A non-standard extension to 1149.1 that provides a feedback path for pacing 133 

transaction on the interface. 134 

Serial Wire Debug (SWD): An interface used for Basic Debug Communication. See [ARM01]. 135 

Series Scan Topology: A connection scheme where the control signals on the debug interfaces are 136 

connected in parallel, but the data signals are daisy chained. 137 

Silicon Test Subsystem (STS): This subsystem supports communication between the DTS and the on-chip 138 

logic used for production test (boundary scan, BIST, etc.). 139 

Star Scan Topology: A connection scheme where both the control and data signals on the debug interfaces 140 

are connected in parallel. 141 

System Software Trace (SyS-T): A format for transporting software traces and debugging information 142 

between a target system (TS) running embedded software, and a debug and test system (DTS), typically a 143 

computer running one or more debug and test applications (debuggers and trace tools). 144 

System Trace Module (STM): A system trace interface with capabilities to export SW (printf type) and 145 

HW generated traces (e.g., PC trace and memory dumps). Typical implementation is 4-bit parallel double 146 

data rate. The STM uses a nibble-oriented protocol called STP. See [MIPI03]. 147 

System Trace Protocol (STP): The protocol used with STM. See [MIPI03]. 148 

System on a Chip (SoC): An electronic system in which all (or most of) the functional modules are 149 

integrated on a single silicon die and packaged as a single chip. 150 

System Trace: In the context of this document, system trace refers to SW Instrumentation Trace and HW 151 

Instrumentation Trace. 152 

• SW Instrumentation Trace:Message output from instrumented application code.  153 

• HW Instrumentation Trace: Messages triggered by transactions/events on the SoC infrastructure(s) 154 

and other HW modules in the system.  155 

Target System (TS): The system being debugged, up to the Debug and Test Interface (DTI). The TS might 156 

be a discrete device (a chip) or a collection of 1 to N discrete devices grouped on a board or collection of 157 

boards. The TS might also contain 0 to N individual Debug and Test Targets. 158 
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Test Access Port (TAP): The on-chip interface to Debug and Test resources. Both 1149.1 and 1149.7 159 

support the concept of a Test Access Port. 160 

Timing: The AC characteristics of debug signals at the pins of the target device. Includes skew, jitter, rise 161 

and fall times, data/clock alignment, set-up and hold times. While this is shown to be common between all 162 

connectors, there will likely be some variation, for example the Gigabit connector might not have separate 163 

clock and data pins. 164 

Trace: A form of debugging where processor or system activity is made externally visible in real-time or 165 

stored and later retrieved for viewing by an applications developer, applications program, or, external 166 

equipment specializing observing system activity. 167 

Trace Channel: A group of one or more signals and a clock that move trace information from the TS to the 168 

DTS. There may be more than one Trace Channel between the TS and DTS. 169 

Trace Data Protocol: The implementation-specific encoding of a particular type of trace by a particular 170 

module. 171 

Trace Port: An output port for the transmission of real-time data indicating the operation of the target (e.g., 172 

program execution and/or data bus transactions). Data transmitted across the Trace Port may be generated 173 

by hardware, software instrumentation, or by a mixture of the two. This does not include trace collected on-174 

chip for later upload. 175 

Trace Port Analyzer (TPA): An external hardware unit for collecting data transmitted from the Trace Port. 176 

The data might be stored locally in real time before uploading to the host debug tools for later analysis by 177 

the user, e.g., a logic analyzer or a unit customized to record trace information would both qualify. 178 

Trace Wrapper Protocol (TWP): A protocol that wraps trace from different sources into a single stream 179 

for simultaneous capture by a single TPA. See [MIPI04] and [MIPI04a]. 180 

Trigger: An indication that a specific system event has occurred. A trigger may be an input to the TS, a 181 

signal within the TS, or an output from the TS. The response to the trigger is determined by the entity to 182 

which the trigger is sent. 183 

2.2 Abbreviations 
e.g. For example (Latin: exempli gratia) 184 

i.e. That is (Latin: id est) 185 

2.3 Acronyms 
AC Alternating Current 186 

BIST Built-in Self-Test 187 

CCC Common Command Code 188 

CPU Central Processing Unit 189 

DACS Debug Access and Control Subsystem 190 

DDR Double Data Rate 191 

DFT  Design for Test 192 

DIP Data Integrity Package 193 

DIVS Debug Instrumentation and Visibility Subsystem 194 

DNI Debug Network Interfaces 195 

DPI Debug Physical Interfaces 196 
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DSP Digital Signal Processor 197 

DTC Debug and Test Controller 198 

DTI Debug and Test Interface 199 

DTS Debug and Test System 200 

DTT Debug and Test Target 201 

GbD Gigabit Debug 202 

GbT Gigabit Trace 203 

HTI High-speed Trace Interface 204 

HW Hardware 205 

I3C Improved Inter Integrated Circuit 206 

ID Identifier 207 

IEEE Institute of Electrical and Electronics Engineers 208 

IP Intellectual Property 209 

IPS Internet Protocol Sockets 210 

IPR Intellectual Property Rights 211 

ISTO Industry Standards and Technology Organization 212 

JTAG Joint Test Action Group 213 

microSD Micro Secure Digital 214 

MMC MultiMediaCard 215 

NIDnT Narrow Interface for Debug and Test 216 

nTRST Not Test Reset 217 

OFM Original Functional Mode 218 

OS Operating System 219 

PC Personal Computer or Program Counter 220 

PCB Printed Circuit Board 221 

PHY Physical Interface 222 

POR Power on Reset 223 

PTI Parallel Trace Interface 224 

RF Radio Frequency 225 

RTCK Return Test Clock 226 

SIM Subscriber Identity Module 227 

SoC System on a Chip 228 

SPP SneakPeek Protocol 229 

SPTB SneakPeek Transfer Block 230 

STM System Trace Module 231 
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STP System Trace Protocol 232 

STS Silicon Test Subsystem 233 

SW Software 234 

SWD Serial Wire Debug 235 

SyS-T System Software Trace 236 

TAP Test Access Port 237 

TCK Test Clock 238 

TCKC Test Clock Compact 239 

TCP Transmission Control Protocol 240 

TDI Test Data Input 241 

TDIC Test Data Input Compact 242 

TDO Test Data Output 243 

TDOC Test Data Output Compact 244 

TDP Trace Data Protocol 245 

TMS Test Mode Select 246 

TMSC Test Mode Select Compact 247 

TPA Trace Protocol Analyzer  248 

TS Target System 249 

TWP Trace Wrapper Protocol 250 

UDP User Datagram Protocol 251 

USB Universal Serial Bus 252 

WG Working Group 253 

2.4 Use of Inclusive Language 
The MIPI Alliance is committed to the use of inclusive language in its specifications and documentation. 254 

Terms such as “master” and “slave” are being replaced with better, more descriptive terms and the MIPI 255 

Alliance is actively updating its documentation to use the new inclusive language. This document will no 256 

longer include these non-inclusive terms and the reader will notice the new language.  257 

Note that at the time of publication, not all the documents referenced in this document were updated. The 258 

table below is a list of the legacy terms that have been updated in this document with the new inclusive 259 

language. 260 

Referenced Specification Legacy Term New Term 
Debug for I3C Master Controller 

Multi-Mastering Multiple Controller-capable 

Slave Target 

STP Master Major Source 

 261 
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4 Debug System 

4.1 System Framework  
The modern systems on a chip often have complex Debug and Test architectures. In a simplistic view, the 307 

modern SoC Debug and Test architecture can be broken down into the following major subsystems: 308 

• Debug Access and Control Subsystem (DACS) – This subsystem provides a path for the DTS to 309 

obtain direct access to application visible system resources (registers and memory). It also 310 

provides bidirectional communication for configuration and control of debug specific modules in 311 

the TS. The communication between the debug and the DACS is generally implemented via one of 312 

the following (this is not an exhaustive list): 313 

• Serial scan via a dedicated Debug and Test interface on the device 314 

• Memory mapped using a dedicated debug interconnect or in some cases the application visible 315 

system interconnect 316 

• A proprietary communication protocol and interface on the device boundary 317 

• Debug Instrumentation and Visibility Subsystem (DIVS) – This subsystem provides 318 

communication and storage of data generated by debug instrumentation modules (like processor 319 

and system trace) in the target system. DIVS communication path to the DTS is usually via high-320 

speed serial or trace interfaces and is generally unidirectional. 321 

• System Test Subsystem (STS) – This subsystem supports communication between the DTS and 322 

the on-chip logic used for production test (boundary scan, BIST, etc.). Access to the STS is 323 

generally accomplished via serial scan. 324 

• Debug Physical Interfaces (DPI) – The physical interfaces that support debug at the SoC 325 

boundary and on the PCB. 326 

• Debug Network Interfaces (DNI) – The internal interfaces that allow debug and trace data to be 327 

transmitted to and from the DTS on functional networks. This communication is with dedicated 328 

intelligent resources (sometimes called the Debug Butler) that possibly: 329 

• Enable bare metal debug on systems where the normal functional communication management 330 

is not yet functioning 331 

• Allow debug to minimize or eliminate the use of functional resources for managing debug 332 

communications 333 
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Figure 1 provides a top-level view of how all the pieces of the Debug and Test architecture are integrated 334 

on a device. 335 
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Figure 1 MIPI Debug Generic System Framework 
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4.2 The MIPI Debug and Test System  
The MIPI Debug WG effort does not address all the functional blocks in the generic framework. The 337 

Debug WG standards and recommendations focus on device and board interfaces and protocols. There is 338 

also an effort to standardize on communications for debug instrumentation (i.e., trace protocols), but with a 339 

generic approach that maintains compatibility with protocols that already exist. Figure 2 illustrates the 340 

areas of the framework that are targeted by the various MIPI Debug specifications and recommendations 341 

addressed in this document. 342 
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Figure 2 MIPI Debug Documentation and the Debug Architecture 
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Figure 3 shows a more detailed block diagram showing how the generic debug framework can be realized 344 

across an entire multiple-chip system. The devices share the basic debug, trace and functional interfaces. 345 

Basic run control can be provided via the shared debug connection. Trace transport can utilize a shared link 346 

dedicated to trace or a standard application visible network. In all cases, the footprint of the debug interface 347 

to the tools is greatly reduced. 348 
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Figure 3 Example MIPI System Overview 
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5 Debug Physical Interfaces (DPI) 

5.1 Parallel Trace Interface (PTI) Specification 

5.1.1 Trace and Debug Overview 
It has become an accepted axiom that as the complexity of an embedded system increases, the need for 350 

system designers and developers to obtain visibility into the behavior of the system increases 351 

proportionally. One of the most common methods for providing this visibility is to provide a streaming 352 

interface on an embedded System on a Chip. This interface can be used to export data about system 353 

functionality and behavior to a host system for analysis and display. Since the data exported on this 354 

interface often allows developers to reconstruct (or “trace”) some portion of system activity, these types of 355 

interface have commonly been referred to as Trace Interfaces or Trace Ports. Examples of trace data 356 

include: 357 

• The instruction execution sequence for one or more embedded processors. This is commonly 358 

referred to as Program Counter (PC) Trace. 359 

• Data bus transactions made by an embedded processor core. This is commonly referred to as Data 360 

Trace. 361 

• Snapshots of transactions on the system interconnect(s). This is commonly referred to as System 362 

Trace. 363 

• Streaming output from instrumented application code. This is commonly referred to as 364 

Instrumentation Trace. 365 

The bandwidth requirements for the common trace functions listed above often compel system designers to 366 

implement the trace interface as a parallel interface with multiple data signals and a clock. For purposes of 367 

this document, the trace interface will subsequently be referred to as the Parallel Trace Interface or PTI. 368 
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5.1.2 Relationship to MIPI Debug Architecture 
Figure 4 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 369 

PTI specification. 370 
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Figure 4 PTI in the MIPI Debug Architecture 
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5.1.3 Trace Scenarios 
A typical embedded system may have one or more HW modules that produce trace data. The typical flow is 372 

outlined below and illustrated in Figure 5. 373 

• Debug and Test Targets (DTTs) reside in the Target System (TS). 374 

• Trace modules inside a DTT contain one or more HW sub-modules that capture the system 375 

transactions with the required data. See the Trace Collect block in Figure 5. 376 

• One or more HW modules encode or compress the data into an implementation specific 377 

encoding(s). These encoding(s) are called the Trace Data Protocols (TDPs). See the Trace Format 378 

block in Figure 5. 379 

• One or more HW modules export the encoded data to the DTC using device pins. The interface 380 

used to transfer this data is the Parallel Trace Interface or PTI. See the Trace Export block in 381 

Figure 5. 382 

• The DTC captures the data. 383 

• The data is decoded and analyzed using the DTS. 384 
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Figure 5 Example System with PTI 
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Note that only HW modules directly responsible for producing the data and clock of a PTI are required to 386 

implement a PTI. Figure 6 shows how the PTI implementation is dependent upon system configuration. 387 
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Figure 6 PTI Layers within a System 

The scenario for Trace Module 0 is reasonably straightforward. The module itself is directly connected to a 389 

dedicated PTI on the device boundary and the module is responsible for implementing the PTI. 390 

The scenario for Trace Modules 1–3 is slightly more complex. Here multiple modules export trace through 391 

a device level pin manager or mux. This management logic is only responsible for controlling which pins 392 

on the device PTI are assigned to the device internal trace clients. It does not produce the data and clock 393 

signals for the PTI but only routes them from the various trace modules. Thus, the individual trace modules 394 

are required to implement the PTI. Since the pin manager routes the internal PTI signals to the device 395 

boundary, there is also a PTI at the device pins. 396 

The scenario for Trace Modules 4–6 shows a system where multiple trace modules provide data over a 397 

proprietary trace interconnect. This system allows data to be combined or interleaved in some fashion 398 

before export. The interleaving and export module implements the PTI and the individual trace modules 399 

communicate using implementation specific protocols that are beyond the scope of this document. 400 
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5.1.3.1 Multi-Point Trace Connections 
Version 2 of the PTI specification expands the interface description to include a shared trace connection 401 

where multiple PTI interfaces are merged through a single connector on a PCB board. Multi-point PTIs are 402 

very useful for supporting trace on fielded systems that have multiple trace-enabled ASICs but only a single 403 

connector (with limited data pins) for interfacing to an external DTC. A standard example would be a 404 

mobile terminal with an application and modem SoC and a single MIPI NIDnT connection. 405 

Devices can be configured to drive data on a subset of the PTI signals on their boundaries. The PTI signals 406 

are merged at the connector, but only one PTI is driving any given data signal. The clock for all the 407 

interfaces is supplied from an external source (generally the DTC). Figure 7 shows an example with four 408 

devices (each with 4-pin PTIs) sharing a connector with each of them only exporting on a single pin. 409 

A similar configuration is shown in Figure 8, but in this scenario only two devices are active and the port is 410 

shared as 3 pins and 1 pin. These are just examples, and the multi-point routing scheme defined in this 411 

document supports varying PTI widths and numbers of devices. 412 

Providing these enhanced features requires new operating modes for the clock and data portions of a PTI. 413 

• Clock Modes 414 

• PTI-out-clock Mode: The PTI sources the clock along with the data 415 

• PTI-in-clock Mode: The clock for the PTI is an input to the module driving the PTI data 416 

• Data Modes 417 

• Point-to-point Data Mode: Data indexes are fixed on the PTI 418 

• Multi-point Data Mode: Data indexes may shift across the PTI 419 
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Figure 7 Multi-Point PTI with 4-Pin Trace and Four Devices Sharing the Connector 
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Figure 8 Multi-Point PTI with 4-Pin Trace and Two Devices Sharing the Connector 

5.1.4 Detailed Specification 
For details of the MIPI PTI, consult the document: MIPI Alliance Specification for Parallel Trace Interface, 422 

[MIPI02]. This specification is available to MIPI members and to the public through the MIPI website. The 423 

public version of the specification can be found at: http://resources.mipi.org/mipi-pti-download.  424 

http://resources.mipi.org/mipi-pti-download
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5.2 High-speed Trace Interface (HTI) Specification 

5.2.1 Overview 
Transferring data off-chip from high performance embedded microprocessor cores requires a data port with 425 

sufficient trace data bandwidth. Parallel port implementations such as MIPI Parallel Trace Interface (PTI), 426 

[MIPI02], employ a clock synchronous parallel interface, using as many as 32 parallel data lines to provide 427 

the required bandwidth. Increasing CPU clock speeds and use of multiple processor cores demand 428 

increasing data port bandwidth, while at the same time the number of I/O pins used for the data port is 429 

being reduced to facilitate lower cost and a higher level of SOC/ASIC integration. 430 

MIPI High-speed Trace Interface (HTI) is a serial implementation of the data port, taking advantage of 431 

available high-speed serial interface technology used in interfaces such as PCI Express®, DisplayPortTM, 432 

HDMI®, or USB, provides higher transmit bandwidth with fewer I/O pins compared with a parallel 433 

implementation. Unlike protocol specifications in the MIPI Gigabit Debug portfolio, such as [MIPI08], 434 

HTI is not designed to be used over the high-level protocols implemented by interfaces such as PCI 435 

Express, but is intended to re-use the low-level physical high-speed portions of those interfaces, in a bare-436 

metal environment. 437 

5.2.2 Relationship to the MIPI Debug Architecture 
Figure 9 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 438 

HTI specification. 439 
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Figure 9 HTI in the MIPI Debug Architecture 
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5.2.3 HTI Details 
HTI defines a method to transport a single stream of trace information over a channel consisting of one to 441 

eight high-speed serial lanes, using the Aurora 8B/10B protocol [AUR01]. HTI uses the serial simplex 442 

mode of Aurora to transmit data in one direction from TS to DTS. 443 

The HTI specification supports transmission of either the MIPI STP [MIPI03] protocol or MIPI TWP 444 

[MIPI04a] protocol over an HTI channel. 445 

The HTI specification consists of the following aspects: 446 

• The LINK layer, which defines how the trace is packaged into the Aurora 8B/10B protocol. 447 

• The PHY layer, which defines the electrical and clocking characteristics. 448 

• A programmer's model for controlling HTI and providing status information. 449 

In addition to the trace information, the HTI LINK layer provides the ability to include: 450 

• Optional CRC data, to assist in detecting errors in the trace transmission. 451 

• Optional User Flow Control messages, to indicate additional information about the trace data 452 

stream. 453 

5.2.4 Detailed Specification 
For details on HTI, consult the MIPI Alliance Specification for High-speed Trace Interface (HTI), 454 

[MIPI09]. This specification is available to MIPI members and to the public through the MIPI website. The 455 

public version of the specification can be found at: http://resources.mipi.org/mipi-hti-download.  456 

http://resources.mipi.org/mipi-hti-download
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5.3 Debug Connector Recommendations 

5.3.1 Dedicated Debug Connector Overview 
Board developers, debug tools vendors and test tool vendors all benefit when the number of connectors and 457 

connector pin mappings used to support Debug and Test is minimized. To this end, MIPI Alliance is 458 

promoting a set of connectors and mappings that address a wide variety of debug use scenarios. 459 

5.3.2 Relationship to the MIPI Debug Architecture 
Figure 10 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 460 

connector recommendation. 461 
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Figure 10 Connectors in the MIPI Debug Architecture 
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5.3.3 Basic Debug Connectors 
As the connector was not part of the original IEEE 1149.1 JTAG standard, a large number of different 463 

JTAG connectors have emerged. The MIPI recommendation of standard connectors promotes convergence 464 

toward a minimum set of debug connectors. The scalable 0.05 inch Samtec FTSH connector family 465 

provides a cheap, small and robust target connection and is available in many variants (including lockable 466 

ones) from multiple connector vendors. The pin-out allows scaling of the debug connection to meet 467 

different requirements. This includes very small footprint connections (down to 10 pins), legacy JTAG 468 

support (including vendor specific pins) and system level trace support (STM). 469 

Missing pin and Plug at pin 7 
for key.

 470 

Figure 11 Basic Debug PCB (left) and Cable End Connector (34-pin Samtec FTSH) 

5.3.4 High-Speed Parallel Trace Connectors 
Many debug tools vendors support target systems with high-speed trace interfaces. These tools utilize a 471 

number of different mating connectors. 472 

The MIPI Alliance Recommendation for Debug and Trace Connectors, [MIPI01], document defines two 473 

connectors for supporting high-speed trace and basic debug. The first connector is only intended for 474 

backwards-compatible designs. The second connector is recommended for new designs. The goal is to have 475 

this recommendation define a “de facto” industry standard for the trace connection and thus lessen the 476 

burden on target system and tools developers that need to support a large number of different mating 477 

connections. 478 

The recommended trace connector is a 60 pin Samtec QSH/QTH connector. The signal to pin mapping, 479 

which is defined in the recommendation, supports one run control and several trace configurations. The 480 

different trace configurations use up to 40 data signals and up to 4 clock signals. To minimize complexity, 481 

the recommendation defines four standard configurations with one, two, three or four trace channels of 482 

varying width. 483 

 484 

Figure 12 Recommended Samtec QSH/QTH Connector 
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5.3.5 Detailed Documentation 
For details of the MIPI recommended connectors and connector pin mappings, consult the document: MIPI 485 

Alliance Recommendation for Debug and Trace Connectors, [MIPI01]. This document is available to MIPI 486 

members and to the public through the MIPI website. The public version of the specification can be found 487 

at: https://mipi.org/sites/default/files/MIPI-Alliance-Recommendation-Debug-Trace-Connectors.pdf.  488 

https://mipi.org/sites/default/files/MIPI-Alliance-Recommendation-Debug-Trace-Connectors.pdf
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5.4 Narrow Interface for Debug and Test (NIDnT) Specification  

5.4.1 Overview 
The MIPI Debug Working Group has standardized a way to utilize functional interfaces for debug or test. 489 

This technology is called NIDnT (Narrow Interface for Debug and Test). It allows better debug support in 490 

production or near-production units. 491 

NIDnT technology defines low pin count, reliable, and high performance, debug interfaces that can be used 492 

in deployed systems. These interfaces provide access to basic debug, trace of application activity, and HW 493 

test capability by reusing already existing functional interfaces. In some cases, these interfaces are 494 

accessible at the packaged boundary. This technology provides the means to use functional interfaces for 495 

either functional or debug purposes. One or more functional interfaces (e.g., MMC card slot for trace and 496 

USB for basic debug) may be used to provide debug capability. NIDnT technology does not aim to replace 497 

current technologies such as debugging via a serial interface (e.g., GDB using a UART, or on-device debug 498 

agent). 499 

5.4.2 Relationship to the MIPI Debug Architecture 
Figure 13 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 500 

NIDnT specification. 501 
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Figure 13 NIDnT in the MIPI Debug Architecture 
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5.4.3 NIDnT Details 
NIDnT technology has the potential for changing the product development paradigm as it provides for the 503 

use of one or more of a product’s functional interfaces for debug. This can extend the availability of the 504 

debug capabilities used in the early stages of product development to the latter stages. This is especially 505 

valuable when these interfaces are available at the boundary of the product’s actual physical enclosure in 506 

the product’s final form factor. This change in the product development paradigm is described in the 507 

following paragraphs. 508 

During the early stages of product development, IEEE 1149.1/1149.7/SWD/I3C based basic debug, trace of 509 

application activity, and software messages sent over simple streaming interfaces like serial ports are 510 

typically used for debug. Historically, much of this product development is performed using test or 511 

development boards. These boards provide dedicated and readily accessible Debug and Test interfaces for 512 

connecting the tools. A system with a dedicated debug interface is shown in Figure 14. 513 
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 514 

Figure 14 Example of System with a Dedicated Debug Interface 

In most cases, a product’s final form factor does not have dedicated Debug and Test interfaces as these 515 

interfaces are not propagated to the boundary of the product’s physical enclosure. This hampers the 516 

identification of bugs present at this point in the product development. 517 

A product might include a proprietary JTAG connector that requires some disassembly (e.g., removing the 518 

battery cover and battery) and the use of a test fixture. The physically invasive process of accessing this 519 

connector could itself cause bugs or RF performance issues to disappear, or new ones to appear. 520 
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Figure 15 shows how NIDnT technology extends the use of functional interfaces for Debug and Test 521 

purposes. It creates a dual use functional interface by multiplexing the debug signals with the normal 522 

function signals within the SoC in a manner that is similar to a switch. Connecting either the normal 523 

function or the debug function to the interface connects that function’s inputs and outputs to the interface. 524 

Disconnecting either the normal function or debug function from the interface connects its inputs to 525 

inactive default values that create the function’s inert operation while leaving its outputs unused. For 526 

example, a SoC could multiplex an IEEE 1149.7 Test Access Port (TAP) and a Parallel Trace Interface 527 

(PTI) over the functional I/Os that normally provide a microSD interface. In this case, the IEEE 1149.7 528 

TAP could be used for both basic debugging and as a control channel for the trace function that utilizes the 529 

PTI interface. 530 
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Figure 15 Example of System with NIDnT Capability 

It is expected that adapters will be used to connect a product’s NIDnT Interface (e.g., microSD interface, or 532 

USB) to the MIPI Debug Connectors (as defined in [MIPI01]). The use of an adapter provides for 533 

debugging the product in its final form factor with standard debug tools, as the adapter remaps the signals 534 

presented by the tools on these standard debug connectors to the appropriate positions on the functional 535 

connectors. 536 

5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes 
A NIDnT Interface supports an operating mode that provides all functional operation of the interface 537 

(Overlay Mode 0, also called the Original Functional Mode (OFM)) and one or more non-OFM Overlay 538 

Modes (Overlay Modes 1 through n) providing debug and test capability. 539 

The debug and test capabilities that can be supported with these Overlay Modes are listed below with their 540 

associated pin counts shown in parenthesis. These capabilities might be mixed and matched to provide one 541 

or more combinations of debug and test capability within the limitations (pin count and drive 542 

characteristics) of a specific functional interface or combination of interfaces. The combinations supported 543 

for a specific NIDnT Interface are outlined in interface-specific sections of the NIDnT specification. 544 
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Table 1 Summary of Test/Debug Capabilities Supported by NIDnT 545 

Capability Interface with 
Single-Ended Electricals 

Interface with 
Differential Electricals 

Basic Debug 

2-pin (Min-Pin) Debug 
• IEEE 1149.7 [IEEE02] 
• Serial Wire Debug [ARM01] 
• UART 
• I3C 
• Vendor Defined Single-Ended Debug 

4-pin High-Speed Debug 
• Vendor Defined Differential Debug 

5-pin Legacy Debug 
• IEEE 1149.1 [IEEE01] 

6-pin Modified Legacy Debug 
• Modified IEEE 1149.1 Standard with 

return clock (deprecated) 

Trace 

Single-Ended Trace 
• Parallel Trace Interface [MIPI02] 
• Vendor Defined Single-Ended Trace 

High-Speed Trace 
• High-Speed Trace Interface (HTI) 

[MIPI09] 
• Vendor Defined Differential Trace 

User Defined Vendor Defined Single-Ended Vendor Defined Differential 

The trace function can either run with a clock shared with the 2-pin Min-Pin debug interface or run with an 546 

independent clock. If the focus is on maximum trace bandwidth, a shared clock provides the largest number 547 

of trace data pins but ties the data rate of each data pin to the clock rate of the 2-pin Min-Pin debug 548 

interface. 549 

Non-OFM Overlay Modes that support debug, i.e., that switch some of the NIDnT Interface pins to being 550 

used for Basic Debug signals, are called Debug Overlay Modes (see table in the NIDnT Specification, 551 

[MIPI05]). 552 

5.4.5 Functional Interfaces that are NIDnT Candidates 
The current version of the NIDnT Specification addresses the reuse of the following interfaces: 553 

• microSD 554 

• USB (USB 2.0 and USB Type-CTM) 555 

• Display (HDMI and DisplayPort (DP)) 556 

Future versions of the NIDnT Specification might support other interfaces including, but not limited to: 557 

• SIM (smart card) 558 

• UniPro 559 

5.4.6 Detailed Specification 
For details of NIDnT technology, consult: MIPI Alliance Specification for Narrow Interface for Debug and 560 

Test (NIDnT), [MIPI05]. This specification is available to MIPI members and to the public through the 561 

MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-nidnt-562 

download.  563 

http://resources.mipi.org/mipi-nidnt-download
http://resources.mipi.org/mipi-nidnt-download
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6 Debug Access and Control Subsystem (DACS) 

6.1 IEEE 1149.7 Debug and Test Interface Specification  
The IEEE 1149.7 standard [IEEE02] supports the needs of both Debug and Test. It is a superset of the 564 

IEEE 1149.1 standard [IEEE01] and represents a natural evolution of this standard. This approach 565 

preserves the industry’s hardware and software investments in the IEEE 1149.1 standard since its inception. 566 

While this is not a MIPI specification, the min-pin debug effort started in MIPI, so it is included here to 567 

help complete the debug framework. The standard: 568 

• Provides a substantial, yet scalable set of additional debug related capability 569 

• Supports multiple connection topologies 570 

• Four-wire series or star 571 

• Two-wire star  572 

• Halves the width of the interface in two-wire star configurations while maintaining performance 573 

Six capability classes (T0-T5) are supported, with the implementer selecting the capability class 574 

implemented. A class defines both mandatory and optional capability. Class capability increases 575 

progressively, with the capability of a class including the capability of all lower numbered classes.  576 

Capability classes T0-T2 support operation with the four-wire Test Access Port (TAP) (defined by the IEEE 577 

1149.1 standard) connected in a four-wire series topology. Each of these classes incrementally extends the 578 

IEEE 1149.1 capability while using only the Standard Protocol defined by the IEEE 1149.1 standard. 579 

Capability classes T3 additionally supports deployment in a four-wire star topology. 580 

Capability classes T4-T5 provide for implementing devices with either a four-wire TAP (IEEE 1149.1 style) 581 

or a two-wire TAP (unique IEEE 1149.7 style). Devices with the four-wire TAP configuration can be 582 

operated in all connection topologies. Devices with the two-wire TAP configuration can be operated only in 583 

a two-wire scan topology. 584 

The T4-T5 classes incorporate the Advanced Protocol. The Advanced Protocol provides for the joint use of 585 

the TAP for real-time system instrumentation, classic debug, and test, using only the TCKC and TMSC 586 

signals as it: 587 

• Redefines the functionality of the IEEE 1149.1 TCKC and TMSC signals 588 

• Eliminates the need for the TDIC and TDOC signals 589 

• Allows the use of the TAP for both scan and non-scan data transfers 590 

The combination of a two-wire TAP and use of the Advanced Protocol provides the capability of a five-591 

wire IEEE 1149.1 TAP using only two signals, plus additional system debug capability. 592 
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A high-level view of the IEEE 1149.7 interface connectivity between a DTS and TAPs within the TS is 593 

shown in Figure 16. Both the four-wire (wide) and two-wire (narrow) TAP configurations are shown with 594 

an optional test reset signal. A deprecated non-standard return clock signal is also comprehended with the 595 

four-wire configuration (the use of this and other non-standard signals is strongly discouraged by the 596 

standard). 597 
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 598 

Figure 16 DTS to TS Connectivity 

All capability classes begin operation using the Standard Protocol. IEEE 1149.7 operation is compatible 599 

with IEEE 1149.1 from power-up, with the function of TCK(C) and TMS(C) signals providing the 600 

functionality (or a superset thereof) of the TCK and TMS signals that is specified by the IEEE 1149.1 601 

standard. 602 

All IEEE 1149.7 based devices may be implemented in a manner that allows their use in system 603 

configurations where there is: 604 

• A mix of components implementing different capability classes 605 

• A mix of connection topologies 606 

The DTS can use facilities defined by the standard to determine the following: 607 

• The types of connection topologies deployed within the TS 608 

• The component mix with the TS: 609 

• 1149.1 components  610 

• 1149.7 components + class of each component 611 
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6.1.1 Relationship to MIPI Debug Architecture 
Figure 17 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 612 

IEEE 1149.7 standard. 613 

System Functional/Application Modules SW 
Instrumentation

System
 

Trace

C
ore 

Trace

O
ther 

Trace

H
W

 
Instrum

ent
ation

C
ore 

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther 

D
ebug

M
em

/R
eg

Access

Trace
C

onfig

O
ther 

D
ebug

Boundary Scan
And BIST

Debug InterconnectScan Interconnect Instrumentation Interconnect

TAP TAP TAP TAP

Chip TAP

System
 

M
em

ory

System
 

N
etwork(s)

D
ebug

Buffer

Bus
Interfaces

Scan
Interfaces

D
ebug 

Export 
Interfaces

System Interconnect

C
ore 

D
ebug

Debug and Test System

SoC

PCB
Pin Interfaces

Board Connector Board Connector Board Connector

System Test Subsystem (STS)

Scan Based Debug Access and Control Subsystem (S-DACS)

Memory Mapped  Debug Access and Control Subsystem (M-DACS)

Debug Physical Interfaces

Basic Debug 
Comms I/Fs

High Performance 
Comms I/Fs

Debug
Kernel(s)

Debug Instrumentation and Visibility Subsystem (DIVS)

Board Connector
Switched Functional and 

Debug I/Fs

System
 

Function
Interfaces

High Perf 
Debug I/Fs

Debug Network Interfaces

IEEE
1149.7

 614 

Figure 17 IEEE 1149.7 in the MIPI Debug Architecture 

6.1.2 Detailed Specification 
For details of the 1149.7 specification, consult the document: IEEE 1149.7 Standard for Reduced-pin and 615 

Enhanced-functionality Test Access Port and Boundary Scan Architecture [IEEE02]. 616 
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6.2 SneakPeek Specification 
The SneakPeek framework is intended to enable debugging of a Target System via standard network 617 

connection. This is accomplished by moving a portion of the Debug and Test Controller function onto the 618 

SoC. These embedded DTC functions can be reached by network communication links that previously have 619 

not been leveraged for DTC-like debug. SneakPeek also leverages a significant portion of the on-chip 620 

debug infrastructure. As a result, DTC tools that previously used dedicated debug links (e.g., 1149.7 or PTI) 621 

can easily be ported to work in a SneakPeek framework through simple network adaptor layers. The 622 

identical capabilities realized via the dedicated debug interfaces should be available via SneakPeek (with 623 

possible performance penalties). 624 

6.2.1 Relationship to MIPI Debug Architecture 
Figure 18 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 625 

SneakPeek specification. 626 
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Figure 18 SneakPeek in the MIPI Debug Architecture 

6.2.2 Overview 
The SneakPeek Protocol (SPP) is used to communicate between a Debug Test System (DTS) and a Target 628 

System (TS). This communication facilitates using Debug Applications (typically software) within the DTS 629 

to debug the operation of the TS. 630 

The SneakPeek Protocol abstracts the system designer from dedicated debug communication interfaces 631 

such as JTAG and replaces them with the familiar mechanism of address-mapped read and write 632 

transactions to enable the Debug Applications to observe, interrogate and adjust the Target System. These 633 
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transactions might be addressed to main system memory, special function memories, or address-mapped 634 

peripherals within the TS. 635 

If the system requires legacy dedicated debug communication interfaces to be used internally within part of 636 

a system, then these could be constructed by a dedicated address-mapped peripheral within the Target 637 

System that is then accessed by the DTS via SneakPeek. 638 

Figure 19 illustrates the route by which one or more debug software applications in a DTS utilize 639 

SneakPeek Memory Agents within a TS to perform address-mapped transactions for them. 640 
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Figure 19 Overview of SneakPeek System 

The basic communication units used by SneakPeek are SneakPeek Command Packets sent from the DTS to 642 

the TS, and SneakPeek Response Packets sent from the TS to the DTS. To provide more efficient 643 

interactions with the communication network, the DTS packs typically many Command Packets into a 644 

single SneakPeek Transfer Block (SPTB) before handing this over to the network driver for transmission to 645 
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the TS. Similarly, the TS packs typically many Response Packets into a single SPTB for transmission to the 646 

DTS. 647 

Figure 20 shows how the SneakPeek Protocol is built on top of existing network infrastructure. 648 
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Figure 20 SneakPeek Protocol and Network Stacks in DTS and TS 

In summary: 650 

• The DTS sends SneakPeek Command Packets grouped into SPTBs to the TS over a data 651 

communication network. 652 

• These Command Packets cause an action or effect in the TS, typically an address-mapped read or 653 

write transaction. The Command Engine generates a Response Packet corresponding to each 654 

Command Packet (with some special case exceptions). 655 

• The TS sends SneakPeek Response Packets grouped into SPTBs to the DTS over the data 656 

communication network. 657 

• The SneakPeek Packets in a stream have a defined order at their source and are interpreted in this 658 

order at their destination. The SneakPeek Protocol is not concerned with actual transmission order 659 
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over the physical or other layers of the network stack but assumes that the network reconstructs 660 

the original order before handing off the SneakPeek Packets at their destination. 661 

6.2.3 Protocol Styles 
SPP version 2.0 introduces TinySPP, an “optimized” style of the SneakPeek Protocol focusing on low 662 

bandwidth interfaces and “tiny” implementations. TinySPP provides a reduced feature-set (e.g., no 663 

sequence number, reduced access space, reduced direct addressing space, and no access size variability) 664 

and “coexists” with SPP version 1.0, or FullSPP. Reducing the size of the Command and Response Packets 665 

is done by assuming certain behaviors and by placing some restrictions on these interfaces. These 666 

restrictions and assumptions are usually acceptable as a tradeoff for a smaller and simpler implementation 667 

more tailored for lower bandwidth and/or half-duplex interfaces. 668 

The main differences between the TinySPP and FullSPP styles are shown in Table 2. 669 

Table 2 Comparison of SneakPeek Protocol Styles  

Feature TinySPP FullSPP 
Number of Access Spaces 8 (3-bit field) 32 (5-bit field) 

Sequence Number N/A. 
Additional requirements to 
network: 
• Messages stay in order 
• Guaranteed Delivery 
• DTS/TS has to do book-

keeping for request/ 
response 

Present 

Standard Size Field Chosen by TS Different options 

Size of Transaction Byte 
Count (TBC) Field 

7 bits 16 bits 

Short Addressing 6-bit address replacement 
supported. 
Short addressing is required in a 
TinySPP implementation 

N/A 

Packet Alignment Byte aligned 16-Byte aligned 

Shortest Packet Length 4 Bytes 16 Bytes 

Usage in MIPI Specifications Debug for I3C GbD for USB, GbD for IPS 

6.2.4 Detailed Specifications 
For details of the SneakPeek Protocol, consult the document: MIPI Alliance Specification for SneakPeek 670 

Protocol, [MIPI06]. This specification is available to MIPI members and to the public through the MIPI 671 

website. The public version of the specification can be found at: http://resources.mipi.org/mipi-spp-v2-672 

download. 673 

http://resources.mipi.org/mipi-spp-v2-download
http://resources.mipi.org/mipi-spp-v2-download
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7 Debug Instrumentation and Visibility Subsystem (DIVS) 

7.1 Instrumentation and Visibility Subsystem Overview 
The DIVS is basically a network or interconnect that allows trace data to flow from various sources to the 674 

trace data sink (generally the DTS). The DIVS architecture provides a rich set of features that can be 675 

utilized to effect this purpose: 676 

• Trace protocols such as the System Trace Protocol (STP) that provide a standard encoding for 677 

trace from multiple different HW and SW sources. 678 

• Trace merge protocols such as the Trace Wrapper Protocol (TWP) that can be used to combine 679 

many different trace streams into a single stream of data for easy transport management. 680 

• Trace network protocols like the Gigabit Trace (GbT) and network adaptor specifications that 681 

define how trace data should be formatted for transport over standard network links. 682 

7.2 System Trace Protocol (STP) Specification 
Real-time trace has become an indispensable tool for debugging and optimizing embedded systems. This 683 

trace can come from a variety of sources, including: 684 

• Trace components monitoring processor instruction and data flow. 685 

• Instrumentation in the software running on a processor. 686 

• Trace components monitoring activities outside the processor. 687 

Each trace source has its own protocol, and these protocols share a number of common required features. 688 

The System Trace Protocol (STP) is a base protocol which provides these common features. 689 

The advantages of this shared approach are: 690 

• Reuse reduces the time and cost of designing new protocols, as well as IP and tools supporting 691 

them. 692 

• Commonality of features enables greater interoperability, for example by providing time 693 

correlation between multiple trace streams. 694 

• A robust base protocol ensures common protocol design mistakes are avoided. 695 

The STP specifications were developed to leverage the advantages listed above. STP was not intended to 696 

supplant or replace the highly optimized protocols used to convey data about processor program flow, 697 

timing or low-level bus transactions. It is anticipated that STP data streams will exist side by side with 698 

these optimized protocols as part of a complete debug system. 699 
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7.2.1 Relationship to MIPI Debug Architecture 
Figure 21 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 700 

STP specifications. 701 
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 702 

Figure 21 STP in the MIPI Debug Architecture 

7.2.2 Protocol Overview 
STP was developed as a generic base protocol that can be shared by multiple, application-specific trace 703 

protocols. STP was not intended to supplant or replace the highly optimized protocols used to convey data 704 

about processor program flow, timing or low-level bus transactions. STP is designed so that its data streams 705 

coexist with these optimized protocols as part of a complete debug system. The STP protocol is now in its 706 

second generation (STPv2) which is backward compatible with the first generation.  707 

STPv2 includes the following features: 708 

• A trace stream comprised of 4-bit frames (nibbles) 709 

• Support for merging trace data from up to 65536 independent data sources 710 

• Up to 65536 independent data Channels per Major Source 711 

• Basic trace data messages that can convey 4, 8, 16, 32, or 64-bit wide data 712 

• Time-stamped data packets using one of several time stamp formats including: 713 

• Gray code 714 

• Natural binary 715 

• Natural binary delta 716 

• Export buffer depth (legacy STPv1 timestamp that requires DTC support) 717 

• Data packet markers to indicate packet usage by higher-level protocols 718 

• Flag packets for marking points of interest (for higher-level protocols) in the stream 719 
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• Packets for aligning time stamps from different clock domains 720 

• Packets for indicating to the DTC the position of a trigger event, which is typically used to control 721 

actions in the DTC; for example, to control trace capture 722 

• Packets for cross-synchronization events across multiple STP sources 723 

• Support for user-defined data packets 724 

• Facilities for synchronizing the trace stream on bit and message boundaries 725 

• Optional support for data integrity protection of the trace stream 726 

• Add data integrity package (DIP) to facilitate error detection over noisy connections 727 

• Platform Description ID (PDID) packet types to carry payload information identifying the 728 

platform the trace was captured and describe the contained trace data formats to enable processing 729 

tools to auto-detect the format of the individual traces received from the trace stream itself. 730 

Figure 22 shows the conceptual hierarchy of the different terms described in this specification. The clouds 731 

are elements from the data model. 732 

A stream of STP packets generally contains data from a number of different Major Sources, which in turn 733 

may each have a number of different Channels. These two levels of hierarchy may be used, for example, to 734 

distinguish different software applications (Channels) running on different processors (Major Sources). 735 

Channel Channel Channel Channel

Major Source

STP stream

Data

Marker Flag

User, PDID

Error

Trigger

Time sync

Major Source

Data
Integrity 

Protection

 736 

Figure 22 Conceptual Hierarchy of STP Major Sources and Channels 

Figure 23 shows an example of a target system that utilizes a module implementing the System Trace 737 

Protocol. In this example, the STP data is transferred to the DTC across a PTI. 738 
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 739 

Figure 23 STM in a Target System 

The timing diagram in Figure 24 shows an example of the STP packets that might be transferred to the 740 

DTC in such a system. This example shows the end of a synchronization sequence followed by a series of 741 

16-bit data packets on Channel 4 of Trace Source (Major Source) 3. 742 

Time

1111 1111 1111 0000 1111 0000 0100 0001 00000000

0011 0000 0100 0101 0001 0011 0100 01010010

0011

End of ASYNC VERSION = 4 M8 = 3

C8 = 4 D16 = %x1234 D16

 743 

Figure 24 Example STP Packet Sequence 

7.2.3 Detailed Specification 
In addition to the current version 2.2 of the MIPI STP Specification, version 2.3 is under development in 744 

the MIPI Debug Working Group and is expected to be available in 2021. Version 2.3 will add a new 745 

Platform Description ID packet for identifying the correct decoder(s). 746 

For details of MIPI STP, consult the document: MIPI Alliance Standard for System Trace Protocol 747 

Specification Version 2.2, [MIPI03]. This specification is available to MIPI members and to the public 748 

through the MIPI website. The public version of the specification can be found at: 749 

http://resources.mipi.org/mipi-download-system-trace-protocol. 750 

http://resources.mipi.org/mipi-download-system-trace-protocol
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7.3 Trace Wrapper Protocol (TWP) Specification  

7.3.1 Overview 
The Trace Wrapper Protocol (TWP) enables multiple source trace streams to be combined (merged) into a 751 

single trace stream. The basic principle is that the source trace streams (byte streams) can be assigned 752 

system unique IDs. A wrapping protocol is then used to encapsulate all the streams in the system 753 

identifying them with these IDs. This protocol also includes provisions for synchronizing the merged 754 

output stream and providing inert packets for systems that cannot disable continuous export of data. It has 755 

optional facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event, 756 

which is typically used to control actions in the DTC, for example to control trace capture. 757 

This specification is complementary to the MIPI Alliance Specification for Parallel Trace Interface (PTI), 758 

[MIPI02], and to the MIPI Gigabit Debug network adaptor specifications, such as [MIPI07]. It is intended 759 

to be used by any module or layer that merges multiple trace data streams. The ultimate destination of the 760 

merged streams might include: 761 

• Host debug tools via a dedicated trace export interface (PTI) 762 

• On-chip capture into a dedicated trace buffer 763 

• On-chip capture into general system memory 764 

• Host debug tools via a functional network (GbD) 765 

This specification is also complementary to the MIPI Alliance Specification for System Trace Protocol, 766 

[MIPI03], enabling a trace output to be shared between sources that implement STP and logic that 767 

implements other trace protocols. 768 

This specification is equivalent to the Trace Formatter Protocol specified in the Arm® CoreSight™ 769 

Architecture Specification, [ARM01]. 770 
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7.3.2 Relationship to MIPI Debug Architecture 
Figure 25 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 771 

TWP specification. 772 
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Figure 25 TWP in the MIPI Debug Architecture 

7.3.3 TWP Features 
The features of TWP are summarized below: 774 

• Allows up to 111 source trace streams to be represented as a single stream and later separated by 775 

either hardware or software. 776 

• Requires low additional bandwidth. 777 

• Minimizes the amount of on-chip storage required to generate the protocol. 778 

• Permits any source trace stream to be used, regardless of its data format. 779 

• Is suitable for high-speed real-time separation of the component trace streams. 780 

• Is a bit stream that can be exported using any transport that supports bit stream data. 781 

• Can be efficiently stored to memory whose width is a power of two for later retrieval. 782 

• Has facilities for synchronization points so decode can be accomplished even if the start of the 783 

trace is lost. 784 

• Has facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event, 785 

which is typically used to control actions in the DTC, for example to control trace data capture. 786 

• Has facilities for padding the data output for scenarios where a transport interface cannot be idled, 787 

and valid data is not available. 788 
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7.3.4 TWP Description 
Each trace source, whose output is to be wrapped by TWP, is given a 7-bit trace source ID. The trace 789 

consists of a number of Trace Fragments, each consisting of an ID indicating the source of the trace and at 790 

least one byte of data. 791 

If the source trace stream cannot be naturally represented using a stream of bytes, then an additional 792 

protocol specific to the source trace stream has to be implemented in order to convert the source trace 793 

stream into a stream of bytes. 794 

7.3.5 Layers 
TWP is split into the following layers: 795 

• Layer T1: Flow Control. This layer enables TWP to be used over a connection which requires 796 

continuous communication, for example PTI in situations where the clock cannot be stopped. 797 

• Layer T2: Alignment Synchronization. This layer enables the alignment of frames in Layer T3 to 798 

be determined. 799 

• Layer T3: Data. This layer conveys trace data using 128-bit frames. 800 

Trace sink
without flow 

control

T3

e.g. PTI continuously 
supplied with data

T1

T2

Trace sink
with flow control

Trace sink
with alignment

e.g. PTI where clock 
can be stopped.

e.g. storage in 
memory on 16-byte 
boundaries.

Interleaved
trace streams

 801 

Figure 26 Example Use Cases for Layers T1, T2 and T3 

7.3.6 Detailed Specification 
For details of MIPI TWP, consult the document: MIPI Alliance Specification for Trace Wrapper Protocol, 802 

[MIPI04] and [MIPI04a]. This specification is available to MIPI members and to the public through the 803 

MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-twp-804 

download.  805 

http://resources.mipi.org/mipi-twp-download
http://resources.mipi.org/mipi-twp-download
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7.4 Gigabit Trace (GbT) 

7.4.1 Summary 
One of the primary functions of the DIVS is to provide means to organize on-chip data and transport it to 806 

an external Debug and Test System for analysis. Historically, this data path used dedicated interfaces on the 807 

SoC boundary (the Parallel Trace Interfaces introduced earlier). In some system scenarios, however, it is 808 

desirable to transport the trace data via networks and interfaces which are shared with traffic sent by the 809 

mission mode (normal) functions of the device. Leveraging functional interfaces and transports for debug 810 

enhances the capabilities of the debug systems in scenarios where debug over dedicated interfaces is 811 

difficult or impossible. Gigabit Trace (GbT) focuses on the sharing of standard communication channels for 812 

debug. 813 

The GbT architecture is a layered system. The GbT System facilitates packaging trace data as a stream of 814 

GbT Network messages suitable for transport over a shared network and/or interconnect. It defines a 815 

network independent set of data packets that are shared (but not required) by all network transports.  816 

A Gigabit Trace system also requires a Network Adaptor that consumes GbT Network Messages and 817 

produces a message stream compatible with the targeted transport. The network adaptor layers are generally 818 

called Gigabit Debug Adaptors since they often support other network capable debug protocols like 819 

SneakPeek. The goal is to define MIPI Gigabit Debug network adaptor specifications for all the common 820 

transports found in different systems. 821 

7.4.2 Relationship to MIPI Debug Architecture 
Figure 27 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 822 

Gigabit Trace specifications. 823 
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Figure 27 Gigabit Trace and the MIPI Debug Architecture 
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7.4.3 Gigabit Trace System Overview 
The TWP has facilities to readily adapt trace streams for export over the high-speed network interfaces 825 

present on different systems. As these functional interfaces are now supporting extremely high data rates, 826 

the term Gigabit Trace (GbT) has been coined. In a GbT system, the trace stream can co-exist on the 827 

network link with other (functional) data traffic and the debug tooling is an application layer client on the 828 

network. This approach enables trace capture in fielded systems where dedicated debug connections are not 829 

available. It also enables trace capture in the DTS using any host system (such as a high-performance PC) 830 

that supports a high-speed network interface and can store data at high data rates. 831 

Figure 28 and Figure 29 show a typical GbT system and the data flow in the TS and the DTS. These 832 

figures are abstract functional diagrams that illustrate data flow through the system. The individual blocks 833 

only define functions that likely exist in the system, not HW or SW modules with defined interfaces and 834 

behaviors. 835 
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 836 

Figure 28 Typical GbT Configuration and Data Flow (TS) 
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 837 

Figure 29 Typical GbT Configuration and Data Flow (DTC and DTS) 

Note that in the TS, the GbT data path may optionally use the low-level OS to merge trace data with other 838 

(functional) network streams. This is obviously more intrusive to the system function than a direct data path 839 

to the lower levels of the network stack (also shown). A more SW-intensive system might ease the 840 

complexity of the HW required to support GbT and it is anticipated that both approaches will be utilized. 841 

The MIPI GbT solution builds on the MIPI TWP data primitives. The MIPI GbT solution uses a GbT 842 

Network Adaptor (in the TS and DTS) to isolate generic GbT from the properties of a specific Network 843 

Stack. A typical GbT system might adapt trace for export over a USB interface (USB 2.0 or 3.0 depending 844 

on bandwidth requirements). 845 

The MIPI Debug Working Group will produce independent specifications defining how a GbT system can 846 

be realized on various transport networks. These Adaptor specifications will provide the details on how to 847 

map the GbT framework outlined in this Annex to specific constraints and capabilities of a particular 848 

transport network. 849 

7.4.4 Requirements Summary 
A GbT system generally addresses the following requirements: 850 

• Provides a mechanism to convey high bandwidth trace data over a transport network. 851 

• Compatible with a variety of transport networks. 852 

• Packages trace data streams into network-independent messages. 853 

• Builds on existing network protocol specifications (referred to as the functional or transport 854 

network). 855 

7.4.5 Detailed Specification 
The details of the Gigabit Trace framework are outlined in an annex to the MIPI Alliance Specification for 856 

Trace Wrapper Protocol, version 1.1.  857 

For details of the Gigabit Trace framework, consult the document: MIPI Alliance Specification for Trace 858 

Wrapper Protocol, [MIPI04a]. This specification is available to MIPI members and to the public through 859 
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the MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-860 

twp-download.  861 

7.5 STP and TWP in the DIVS 
At first inspection, it might seem that STP and TWP have significant functional overlap. Both support the 862 

merging of trace data from multiple trace sources. They also have facilities for stream synchronization and 863 

alignment. A more detailed analysis, however, reveals that the protocols are optimized for different 864 

capabilities and the differences in the protocols complement each other in a complex trace infrastructure. 865 

TWP has a very uniform packet structure that is optimized for encoding and decoding interleaved byte 866 

streams. The protocol can be implemented easily in HW and the ability to switch active trace streams on 867 

any byte boundary decreases the amount of buffering required to support frame creation. The fixed data 868 

frame also simplifies mapping TWP to some other transport protocol payload (the GbT scenario). TWP is 869 

thus ideal for trace data paths where many high-bandwidth trace sources are merged before export on a 870 

high-performance link. 871 

These high-throughput requirements extend into the DTS as well. The fixed frames of TWP enable efficient 872 

decode of the captured trace stream. The DTC hardware can remove lower-level link maintenance packets 873 

(synchronization and padding) before the higher-level data is stored. This type of filtering is highly 874 

desirable when supporting systems where constraints dictate that the trace interface cannot be halted (e.g., a 875 

multi-point data mode PTI).  876 

While STP also supports merging of trace streams, the protocol also provides features that assist high-level 877 

trace protocol (e.g. time stamps, frame markers, and hierarchical source IDs). These features greatly 878 

decrease the complexity at the trace source. These sources do not have to worry about supporting their own 879 

methods of time stamping or frame marking within their own protocols. The hierarchical IDs enable 880 

support for complex trace topologies (e.g., software message traces from multiple processes on multiple 881 

CPUs). Supporting these features increases the complexity of a module merging the data from various 882 

sources into an STP stream. Since the interleaving boundary for STP is the non-fixed STP message 883 

boundary, the modules implementing STP might require significant buffering and pipelining to achieve 884 

high throughput. STP is thus ideal for trace data paths that might not have extreme bandwidth requirements 885 

but support many trace sources (such as SW threads or small HW modules) generating trace. 886 

http://resources.mipi.org/mipi-twp-download
http://resources.mipi.org/mipi-twp-download
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Figure 30 shows an example of a DIVS architecture that uses the various MIPI protocols and specifications 887 

in a layered approach to trace export. SW and HW messages, encoded as STP messages (comprised of STP 888 

packets) are transferred on the trace interconnect. High-bandwidth processor trace byte streams are also 889 

present on this interconnect. These various trace byte streams are interleaved using TWP and the packets 890 

are either exported directly to the pins or collected into GbT Network Messages for adaptation to a 891 

functional network protocol. 892 
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Figure 30 Example Trace Architecture 
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7.6 System Software Trace (SyS-T) Specification 

7.6.1 Overview 
System Software Trace (SyS-T) is a format for transporting software traces and debugging information 894 

between a target system (TS) running embedded software, and a debug and test system (DTS), typically a 895 

computer running one or more debug and test applications (debuggers and trace tools). SyS-T is primary an 896 

OS independent software tracing protocol, but it can also be used on bare-metal or OS environments. 897 

The purpose of SyS-T is to provide a common trace format to exchange information between a TS and a 898 

DTS. SoCs contain many different software agents. For different operating systems there exist different, 899 

specific tracing solutions. There is no common solution existing across different software/firmware and 900 

hardware agents. MIPI SyS-T is aiming to fill this gap. 901 

7.6.2 Relationship to MIPI Debug Architecture 
Figure 31 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 902 

SyS-T specification. 903 
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Figure 31 SyS-T in the MIPI Debug Architecture 



Architecture Overview for Debug  Version 1.3 
 19-Mar-2021 

52 Copyright © 2014–2021 MIPI Alliance, Inc. 
 All rights reserved. 

7.6.3 Usage 
SyS-T provides a platform independent general purpose trace protocol and software instrumentation library. 905 

SyS-T defines a variety of trace messages ranging from simple UTF-8 based text and printf() style 906 

messages to complex binary data payloads. SyS-T is suitable for trace data generation from non-OS, bare-907 

metal environments, as well as OS kernel and user mode software. The SyS-T specification enables vendor 908 

independent trace debug tools development for environments that don’t already provide an established trace 909 

standard. It does so by separating the trace generation on the TS from the decoding on the DTS into 910 

independent tasks.  911 

Today’s platforms or SoCs contain multiple agents that are producing traces send from a TS. Different 912 

agents can be seen as independent from each other regarding trace generation. Additional logic like a trace 913 

arbiter is used to combine the agents trace data fragments together into a single platform level data stream. 914 

SyS-T does not replace the trace arbiter step. SyS-T is used directly inside the agents for generating the 915 

SyS-T trace data the gets send to the trace arbiter. A system implementing SyS-T therefore owns one to 916 

many independent SyS-T instances, depending on how many agents are using the SyS-T tracing method.  917 
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 918 

Figure 32 SyS-T Instances in a Target System 

7.6.4 SyS-T Instrumentation Library 
The SyS-T Data Protocol generation is provided by a portable “C”-Language based software library called 919 

SyS-T Instrumentation Library [MIPI11]. The SyS-T Instrumentation Library provides a function style API 920 

(referred to as the SyS-T API) to software using pre-processor macros. This library serves as the reference 921 

implementation for a SyS-T Data Protocol generator. The usage of this library is optional. Vendor-specific 922 

implementations are allowed as long as the output is compatible with the SyS-T Data Protocol. 923 
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7.6.5 Detailed Specification 
In addition to the current version 1.0 of the MIPI SyS-T Specification, version 1.1, is under development in 924 

the MIPI Debug Working Group and is expected to be available in 2021. Version 1.1 will include an 925 

additional MIPI SyS-T packet type to support sending pure binary data packets. 926 

For details of SyS-T technology, consult: MIPI Alliance Specification for System Software Trace (SyS-T), 927 

[MIPI10]. This specification is available to MIPI members and to the public through the MIPI website. The 928 

public version of the specification can be found at: http://resources.mipi.org/mipi-sys-t-download. In 929 

addition to the specification, the Open Source code for the SyS-T Instrumentation Library with an example 930 

implementation is posted on GitHub, [MIPI11]. 931 

http://resources.mipi.org/mipi-sys-t-download
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8 Debug Network Interfaces (DNI) 

8.1 Gigabit Debug (GbD) Specification 

8.1.1 Overview 
Gigabit Debug (GbD) is the blanket terminology for mapping debug capabilities to a particular functional 932 

network. Unlike NIDnT, the network interface and protocol stack function normally. Gigabit Debug just 933 

defines how to adapt the SneakPeek and Gigabit Trace functions so that they can co-exist with other 934 

network traffic (as normal application layer functions). While the goal of a GbD system is to minimize 935 

intrusiveness of debug on regular system functions, it is acknowledged that some debug capabilities (like 936 

trace) may require significant network bandwidth and will thus have the potential for significant impact to 937 

the normal system. 938 

The current effort focuses on mapping the network independent MIPI SneakPeek Protocol and Gigabit 939 

Trace framework to networks commonly found in many systems. Some of the items addressed in Gigabit 940 

Debug Specifications include: 941 

• Connection/session initialization and de-initialization 942 

• Network link management 943 

• Packaging of MIPI protocol messages into network messages 944 

• Mapping aspects of Basic Debug and Trace functionality to network features 945 

• Network error handling 946 

Figure 33 shows how the Gigabit Debug Adaptor specifications complement the specific MIPI debug 947 

protocol specifications. 948 
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Figure 33 Gigabit Debug Functional Block Diagram 
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One of the fundamental features of GbD functionality is that it co-exists with non-debug network clients 950 

and can operate quite effectively in multi-node networks that are commonplace today. Figure 34 illustrates 951 

how GbD and non-debug network traffic are integrated in such networks. 952 
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Figure 34 GbD in a Multiple-Node Network 
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8.1.2 Relationship to MIPI Debug Architecture 
Figure 35 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 954 

Gigabit Debug specifications. 955 
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Figure 35 Gigabit Debug and the MIPI Architecture 

8.1.3 Detailed Specifications 
Currently, the Gigabit Debug Specification addresses the following functional networks: 957 

• USB 958 

• For details of the Gigabit Debug adaptors for USB, consult the document: MIPI Alliance 959 

Specification for Gigabit Debug for USB, [MIPI07]. This specification is available to MIPI 960 

members and to the public through the MIPI website. The public version of the specification can 961 

be found at: http://resources.mipi.org/mipi-gbd-usb-download.  962 

• Supports both a MIPI-defined extension to standard USB Descriptors and the Debug Device 963 

Class Descriptor as given by the Device Class Specification for Debug, [USB01]. 964 

• TCP and UDP over Internet Protocols 965 

• For details of the Gigabit Debug adaptors for Internet Protocol (IP) sockets, consult the 966 

document: MIPI Alliance Specification for Gigabit Debug for Internet Protocol Sockets, 967 

[MIPI08]. This specification is available to MIPI members and to the public through the MIPI 968 

website. The public version of the specification can be found at: http://resources.mipi.org/mipi-969 

gigabit-debug-for-ips-download.  970 

Other functional networks will be addressed in future Gigabit Debug Specifications.  971 

http://resources.mipi.org/mipi-gbd-usb-download
http://resources.mipi.org/mipi-gigabit-debug-for-ips-download
http://resources.mipi.org/mipi-gigabit-debug-for-ips-download
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8.2 Debug for I3C 

8.2.1 Overview 
The Debug for I3C Specification describes methods for using the Improved Inter Integrated Circuit (I3C) as 972 

a minimal-pin interface to transport debug controls and data between a DTS and a TS. Current debug 973 

solutions, such as JTAG [IEEE01] and Arm® Serial Wire Debug [ARM01], are statically structured which 974 

leads to limited scalability regarding the accessibility of debug components/devices. Also, when looking at 975 

the new requirements of near future technologies, such as 5G, and environments/markets, such as IoT, there 976 

are gaps that need to be addressed. The Debug for I3C Specification targets these gaps and shortcomings by 977 

using the capabilities of I3C to handle debug connectivity on buses that are dedicated for debug or shared 978 

with functional transfers, handling the debug network topology in a dynamic fashion. 979 

The Debug for I3C Specification is designed in accordance with either v1.0 or greater of the MIPI 980 

Specification for I3C [MIPI13], or v1.0 or greater of the I3C Basic Specification [MIPI14]. 981 

Implementations can be used with I3C interfaces that implement either specifications. The Debug for I3C 982 

Specification relies on the multi-controlling and multi-drop capabilities of the I3C Specification. The 983 

Debug for I3C Specification uses the existing common command codes (CCC) as defined by [MIPI13] as 984 

well as defining debug-specific CCC to handle debug communication and trace messaging. In-band 985 

interrupts (IBI) are also used and debug-specific Mandatory Data Byte (MDB) values are defined as a 986 

method of debug event and other communications initiated by the TS.  987 

The Debug for I3C Specification allows for different designs where the I3C bus could be shared with non-988 

debug communication. Whether the I3C bus is shared or dedicated for debug, the specification also allows 989 

for different DTS access points and allows for an externally connected DTS. The ability for an I3C bus to 990 

have multiple Controller-capable devices allows the DTS to be connected as either the Primary Controller 991 

(usually with dedicated debug I3C buses) or as a Secondary Controller (usually with shared I3C buses). 992 
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8.2.2 Relationship to MIPI Debug Architecture 
Figure 36 shows the standard MIPI debug architecture highlighting the functional areas addressed by the 993 

Debug for I3C Specification. 994 
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Figure 36 Debug for I3C in the MIPI Debug Architecture 

8.2.3 Target System Implementation Overview 
The Debug for I3C Specification allows for variations of adaptors for the different debug protocols. This 996 

specification maps the following protocols: 997 

• SneakPeek: Used for debug communication with a SneakPeek Command Engine (TinySPP). 998 

• TWP: Used for output of trace formatted using Trace Wrapper Protocol. 999 

• STP: Used for output of trace formatted using System Trace Protocol. 1000 

• Simplified Address-Mapped (SAM): Simple address-mapped access to TS resources. 1001 

• UART: Virtual UART for character-oriented communication, e.g., scanf() and printf(), or a 1002 

GDB debug monitor. 1003 

• ImpDef: Implementation-Defined communication protocol. 1004 

The primary function of these adaptors (referred to as a Network Adaptor) is facilitating the transport of 1005 

data between debug application layer entities at opposite ends of an I3C bus. The Network Adaptor maps 1006 

data objects that have meaning at the debug application layer to transport mechanisms provided by an I3C 1007 

bus. The Network Adaptor takes data from a debug application layer function and passes it to an I3C 1008 

protocol stack, or vice versa. This mapping preserves the relevant properties of the application data. A 1009 

Network Adaptor also provides control functions connected with system setup, initialization, and operation.  1010 
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Figure 37 shows how the Debug for I3C Specification complements the specific MIPI debug protocol 1011 

specifications with Applications and Debug Protocols above it, and I3C transport networks below it. 1012 
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Figure 37 Debug for I3C Functional Block Diagram 

Figure 38 shows an example Target System. This figure shows the standard I3C Target behavior (colored 1014 

yellow), the global debug functions (colored red), four Network Adaptors (colored purple), and the 1015 

accompanying debug functions (colored green for functions that are typically hardware and blue for those 1016 

that are typically software). 1017 

The Network Adaptors in this system are: 1018 

• Index 0 is a SneakPeek Protocol (SPP) Network Adaptor transporting bytes formatted as 1019 

Command and Response Packets for a Command Engine using the TinySPP style. 1020 

• Index 2 is a System Trace Protocol (STP) Network Adaptor transporting data from an STM which 1021 

contains trace produced by a SyS-T client. 1022 

• Index 4 is a Simplified Address-Mapped (SAM) Network Adaptor transporting bytes formatted as 1023 

Commands and Responses for a Debug Engine using the SAM Protocol. 1024 
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• Index 5 is a Trace Wrapper Protocol (TWP) Network Adaptor transporting trace data from two 1025 

trace sources that has been combined into a single stream using TWP. 1026 

• Index 14 is a UART Network Adaptor carrying character streams to and from scanf() and 1027 

printf() functions in an application program. 1028 
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 1029 

Figure 38 Example Target System with Multiple Network Adaptors 

8.2.4 Detailed Specification 
For details of the MIPI Debug for I3C, consult the document: MIPI Alliance Specification for Debug for 1030 

I3C, [MIPI12]. This specification is available to MIPI members and to the public through the MIPI 1031 

website. The public version of the specification can be found at: https://resources.mipi.org/mipi-debug-i3c-1032 

download.  1033 

https://resources.mipi.org/mipi-debug-i3c-download
https://resources.mipi.org/mipi-debug-i3c-download


Architecture Overview for Debug  Version 1.3 
 19-Mar-2021 

62 Copyright © 2014–2021 MIPI Alliance, Inc. 
 All rights reserved. 

 

This page intentionally left blank. 



Version 1.3 Architecture Overview for Debug 
19-Mar-2021 

 Copyright © 2014–2021 MIPI Alliance, Inc. 
 All rights reserved. 

Participants 
The following list includes those persons who participated in the Working Group that developed this 
Supporting Document and who consented to appear on this list. 
 
Bruce Ableidinger, SiFive 
Christian Boenig, Lauterbach GmbH 
Enrico Carrieri, Intel Corporation 
Gary Cooper, Texas Instruments Incorporated 
John Horley, Arm Limited 
Jason Kirschenbaum, Intel Corporation 
Rolf Kuehnis, Intel Corporation 

Stephan Lauterbach, Lauterbach GmbH 
Jason Peck, Texas Instruments Incorporated 
Radu Pitigoi-Aron, Qualcomm Incorporated 
Matthew Schnoor, Intel Corporation 
Eric Upson, Intel Corporation 
Dan Wetzel, Western Digital Technologies, Inc. 

 

 

Past contributors to v1.2: 
 

Eddie Ashfield, MIPI Alliance (Staff) 
Enrico Carrieri, Intel Corporation 
Gary Cooper, Texas Instruments Incorporated 
Patrik Eder, Intel Corporation 
John Horley, ARM Limited 
Rolf Kuehnis, Intel Corporation 

Stephan Lauterbach, Lauterbach GmbH 
Andrea Martin, Lauterbach GmbH 
Laura Nixon, MIPI Alliance (Staff) 
Jason Peck, Texas Instruments Incorporated 
Norbert Schulz, Intel Corporation 

 



Architecture Overview for Debug Version 1.3  
 19-Mar-2021 

 Copyright © 2014–2021 MIPI Alliance, Inc. 
 All rights reserved. 

 

This page intentionally left blank. 


	Contents
	Figures
	Tables
	Release History
	1 Overview
	1.1 Scope

	2 Terminology
	2.1 Definitions
	2.2 Abbreviations
	2.3 Acronyms
	2.4 Use of Inclusive Language

	3 References
	4 Debug System
	4.1 System Framework
	4.2 The MIPI Debug and Test System

	5 Debug Physical Interfaces (DPI)
	5.1 Parallel Trace Interface (PTI) Specification
	5.1.1 Trace and Debug Overview
	5.1.2 Relationship to MIPI Debug Architecture
	5.1.3 Trace Scenarios
	5.1.3.1 Multi-Point Trace Connections

	5.1.4 Detailed Specification

	5.2 High-speed Trace Interface (HTI) Specification
	5.2.1 Overview
	5.2.2 Relationship to the MIPI Debug Architecture
	5.2.3 HTI Details
	5.2.4 Detailed Specification

	5.3 Debug Connector Recommendations
	5.3.1 Dedicated Debug Connector Overview
	5.3.2 Relationship to the MIPI Debug Architecture
	5.3.3 Basic Debug Connectors
	5.3.4 High-Speed Parallel Trace Connectors
	5.3.5 Detailed Documentation

	5.4 Narrow Interface for Debug and Test (NIDnT) Specification
	5.4.1 Overview
	5.4.2 Relationship to the MIPI Debug Architecture
	5.4.3 NIDnT Details
	5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes
	5.4.5 Functional Interfaces that are NIDnT Candidates
	5.4.6 Detailed Specification


	6 Debug Access and Control Subsystem (DACS)
	6.1 IEEE 1149.7 Debug and Test Interface Specification
	6.1.1 Relationship to MIPI Debug Architecture
	6.1.2 Detailed Specification

	6.2 SneakPeek Specification
	6.2.1 Relationship to MIPI Debug Architecture
	6.2.2 Overview
	6.2.3 Protocol Styles
	6.2.4 Detailed Specifications


	7 Debug Instrumentation and Visibility Subsystem (DIVS)
	7.1 Instrumentation and Visibility Subsystem Overview
	7.2 System Trace Protocol (STP) Specification
	7.2.1 Relationship to MIPI Debug Architecture
	7.2.2 Protocol Overview
	7.2.3 Detailed Specification

	7.3 Trace Wrapper Protocol (TWP) Specification
	7.3.1 Overview
	7.3.2 Relationship to MIPI Debug Architecture
	7.3.3 TWP Features
	7.3.4 TWP Description
	7.3.5 Layers
	7.3.6 Detailed Specification

	7.4 Gigabit Trace (GbT)
	7.4.1 Summary
	7.4.2 Relationship to MIPI Debug Architecture
	7.4.3 Gigabit Trace System Overview
	7.4.4 Requirements Summary
	7.4.5 Detailed Specification

	7.5 STP and TWP in the DIVS
	7.6 System Software Trace (SyS-T) Specification
	7.6.1 Overview
	7.6.2 Relationship to MIPI Debug Architecture
	7.6.3 Usage
	7.6.4 SyS-T Instrumentation Library
	7.6.5 Detailed Specification


	8 Debug Network Interfaces (DNI)
	8.1 Gigabit Debug (GbD) Specification
	8.1.1 Overview
	8.1.2 Relationship to MIPI Debug Architecture
	8.1.3 Detailed Specifications

	8.2 Debug for I3C
	8.2.1 Overview
	8.2.2 Relationship to MIPI Debug Architecture
	8.2.3 Target System Implementation Overview
	8.2.4 Detailed Specification


	Participants

