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1 Overview

1.1 Scope

Recent technological developments have resulted in a quantum leap in the complexity of SoCs. Systems
that were formerly deployed on one or more PCBs are now being instantiated as single discrete devices.
While this trend is in general a boon to manufacturers and consumers of various systems, it has greatly
increased the complexity of system debug and optimization. Signals and interfaces that used to be visible at
test points on a PCB are now deeply embedded inside a SoC. The use of tried and true methods of probing
buses and signals with dedicated Debug and Test equipment is now virtually impossible.

This increase in debug complexity is being addressed by IP vendors, SoC developers, OEMs and tools
vendors. New technologies are being deployed that provide the visibility required in these complex and
deeply embedded designs. In order to maximize the utility and efficiency of debug, converging on common
interfaces and protocols used by these new technologies is essential.

To meet this need, the MIPI Debug Working Group (Debug WG) are developing a portfolio of standards
and other documents that address the particular needs of debug. Some of the areas of focus are listed below.
¢ Minimizing the pin cost and increasing the performance of the basic debug interface

e Increasing the bandwidth, capability and reliability of the high-performance interfaces used to
export high bandwidth, unidirectional debug data (e.g., processor trace data) to the debug tools

¢ Deploying debug connectors that are physically robust and have the performance required for the
high bandwidth demands of modern debug technologies

e Developing generic trace protocols that allow many different on chip trace sources to share a
single trace data flow to the debug tools

e Maximizing debug visibility in fielded systems by reusing some of the functional
interfaces/connectors for debug

o Utilizing the new high bandwidth functional interfaces being deployed on various systems as a
transport for debug

This document provides an overview of the efforts to address these goals and provides summaries of the
documents that address them in detail.

Copyright © 2014-2021 MIPI Alliance, Inc. 1
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2 Terminology

21 Definitions

1149.1: Short for IEEE 1149.1. See [IEEEO01].

1149.7: Short for IEEE 1149.7. See [IEEE(2].

Application Function: All functions of the TS other than Debug and Test Functions.

Application Processor: A programmable CPU (or CPU-based system on a chip (SoC) which may include
other programmable processors such as DSPs), primarily, but not necessarily exclusively, programmed to
coordinate the application processing and user interface processing.

Application Software: Used here to mean the target resident code that runs on the target processor. This
includes the operating system as well as the program(s) running with the OS.

Basic Debug Communication: Debug communication needed through an 1149.1 (or equivalent) port only
to manage basic debug communication functions such as run control, hardware breakpoints and
watchpoints, and examining system state.

Boundary Scan: A production test mechanism where interconnects between chips or logic blocks in an
SoC are verified by forcing known test patterns into the system via a serial scan interface, activating a test
mode, and then scanning out the resultant values to test against expected results.

Built-in Self-Test (BIST): On-chip logic function that verifies all or a portion of the internal functionality
of a SoC during production tests. BIST logic requires minimal interaction with external test infrastructures
and speeds up verification of complex SoCs.

Debug: To detect, trace, and eliminate SW mistakes. Also used to get an insight into an embedded
processor system for performance measurements and debug of system level hardware. Used in this
document in an inclusive way that encompasses stop/start/break/step debugging as well as non-halting
methods such as trace.

Debug Access and Control Subsystem (DACS): The subsystem that provides a path for the DTS to obtain
direct access to application visible system resources (registers and memory).

Debug and Test Controller (DTC): The hardware system that is responsible for managing
communications with a system being debugged (the Target System).

Debug and Test Function: A block of on-chip logic that carries out a debug function such as run control,
providing debug access to system resources, Processor Trace, or test capability.

Debug and Test Interface (DTI): The interface between the Debug and Test System (DTS) and the Target
System (TS). The interface enables access to basic debug communication, the trace port, streaming data
(input and output), and other debug or test capabilities.

Debug and Test System (DTS): The combined HW and SW system that provides a system developer
debug visibility and control when connected to a Target System. The system incorporates:

o A host PC, workstation or other processing system, running the debug or test software, controlling
the Debug and Test Controller. See also: Debug and Test Controller (DTC).

e Debugger: The debugger software, part of the Debug and Test System. It interacts with the Debug
and Test Controller and provides the (graphical) user interface for operating the Debug and Test
Controller (like commanding single step, setting breakpoints, memory display/modify, trace
reconstruction, etc.)

Debug and Test Target (DTT): A component in the Target System that implements one or more Debug
and Test Functions. The interfaces to Debug and Test Targets, where different from the DTI, are not within
the scope of this specification. Examples include the debug control module on a CPU, debug interface to
system memory, or the configuration interface to an on-chip trace module.

2 Copyright © 2014-2021 MIPI Alliance, Inc.
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Debug Instrumentation and Visibility Subsystem (DIVS): The subsystem that provides communication
and storage of data generated by debug instrumentation modules (like processor and system trace) in the
target system.

Debug Physical Interfaces (DPI): The chip and board level interfaces used to connect the DTC to the on-
chip debug functions.

Double Data Rate (DDR): A parallel data interface that provides valid data on both the rising and falling
edge of the interface clock.

Electrical: The definition of:
o Signal voltage levels, current drain and drive strength on inputs, outputs, and bi-directional pins
¢ Rise and fall times and expected loads for device pins.

Function Assignment: The mapping of functions to signals (and thus to pins as per the current Pin
Assignment, e.g., Debug port pin [5] = CLK = TRACECLK.)

Function Select: The method by which the Basic Debug Communication channel can be switched between
use for Debug Functions and use for operations needed to configure the debug system.

Gigabit Trace (GbT): A system architecture that supports transporting trace data over high-speed
networks and transports. See [MIPI04a].

Gigabit Debug (GbD): A set of network-specific adaptor specifications for mapping SneakPeek and
Gigabit Trace to various functional networks.

Hardware Protocol: The signal protocol required for a Debug and Test Controller to correctly move
control or data information between the DTC and Target System.

High Bandwidth Connection: A Mating Connection, Pin Assignment and Electrical specification for full
functionality, high frequency, higher pin count connection between the Target System and the Debug and
Test Controller / TPA.

High-speed Trace Interface (HTI): The transport specification that defines the electrical and timing
characteristics of high-speed serial trace export interfaces. See [/MIPI09].

IEEE 1149.7 (basic debug communication): Enhanced IEEE1149.1 Debug and Test communication
standard, configurable from 4 to 2 pins. The IEEE 1149.7 interface can be viewed as providing
functionality enhanced compared to 1149.1 for Basic Debug Communication and test and with fewer pins.
A two-way communication channel for exclusive Debug and Test uses. See [IEEE02].

Intellectual Property (IP): any patents, patent rights, trademarks, service marks, registered designs,
topography or semiconductor mask work rights, applications for any of the foregoing, copyrights,
unregistered design rights, trade secrets and know-how and any other similar protected rights in any
country. Any IP definition by MIPI Bylaws will supersede this local one.

Low Pin Count Connection: A Mating Connection, Pin Assignment and Electrical specification for Basic
Debug Communication and limited Trace Port functionality, lower frequency, low pin count connection
between the Target System and the Debug and Test Controller / TPA.

Mating Connection: The connector to be used, defined by specific manufacturer and part number. The
required keep out area for board design to enable unobstructed connector mating. The definition of cable
characteristics and terminations may include the characteristics of a connection from the point it leaves an
output buffer in a chip on the target or host side, routing on a printed circuit board on the DTC or Target
System side, cabling between the signal source and destination, and any connections (via connectors) in the
signal path.

Min-Pin: An interface for Basic Debug Communication with a minimal number of pins (2), using either
IEEE 1149.7, SWD or I3C.

Mode Select: A method for selecting a different Mating Connection, a different operating mode, a different
electrical mode or a combination of these, for example switching between 1149.1 and 1149.7.

Copyright © 2014-2021 MIPI Alliance, Inc. 3
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Narrow Interface for Debug and Test (NIDnT): A signal-mapping specification that defines how to reuse
the functional interfaces commonly available on fielded systems for debug. See [MIPI05].

Nexus: An IEEE-ISTO 5001™ standard interface for embedded processor debug. The Nexus standard
includes support for Basic Debug Communication as well as instruction and data tracing. See [ISTO01].

Other Debug: Debug functions not covered by 1149.1, 1149.7 or the Trace Port for example off-chip
memory emulation.

Parallel Trace Interface (PTI): The interface specification that defines the electrical and timing
characteristics of trace export interfaces that consist of a single clock and multiple data signals. See
[MIPI)2].

Pin Assignment: The mapping of signals to pins, e.g., SIGNAL NAME on pin number N. This may
include restrictions on allowable pin assignments.

Processor Trace: The non-intrusive capture and logging of the activity of an embedded processor and the
subsystem in which the processor resides. Processor trace generally consists of one or more of the
following trace types, but it is not limited to these:

e Instruction (PC) Trace — Application execution flow can be reconstructed by processing the logged
information

o Data Trace — Data access activity is captured at the processor boundary

The captured data is encoded for efficiency and this data is stored on-chip for later upload or immediately
transmitted through a chip interface to an off-chip receiver.

Return Test Clock (RTCK): A non-standard extension to 1149.1 that provides a feedback path for pacing
transaction on the interface.

Serial Wire Debug (SWD): An interface used for Basic Debug Communication. See JARM01].

Series Scan Topology: A connection scheme where the control signals on the debug interfaces are
connected in parallel, but the data signals are daisy chained.

Silicon Test Subsystem (STS): This subsystem supports communication between the DTS and the on-chip
logic used for production test (boundary scan, BIST, etc.).

Star Scan Topology: A connection scheme where both the control and data signals on the debug interfaces
are connected in parallel.

System Software Trace (SyS-T): A format for transporting software traces and debugging information
between a target system (TS) running embedded software, and a debug and test system (DTS), typically a
computer running one or more debug and test applications (debuggers and trace tools).

System Trace Module (STM): A system trace interface with capabilities to export SW (printf type) and
HW generated traces (e.g., PC trace and memory dumps). Typical implementation is 4-bit parallel double
data rate. The STM uses a nibble-oriented protocol called STP. See /MIPI03].

System Trace Protocol (STP): The protocol used with STM. See [MIPI03].

System on a Chip (SoC): An electronic system in which all (or most of) the functional modules are
integrated on a single silicon die and packaged as a single chip.

System Trace: In the context of this document, system trace refers to SW Instrumentation Trace and HW
Instrumentation Trace.
o SW Instrumentation Trace:Message output from instrumented application code.
e HW Instrumentation Trace: Messages triggered by transactions/events on the SoC infrastructure(s)
and other HW modules in the system.

Target System (TS): The system being debugged, up to the Debug and Test Interface (DTI). The TS might
be a discrete device (a chip) or a collection of 1 to N discrete devices grouped on a board or collection of
boards. The TS might also contain 0 to N individual Debug and Test Targets.

4 Copyright © 2014-2021 MIPI Alliance, Inc.
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Test Access Port (TAP): The on-chip interface to Debug and Test resources. Both 1149.1 and 1149.7
support the concept of a Test Access Port.

Timing: The AC characteristics of debug signals at the pins of the target device. Includes skew, jitter, rise
and fall times, data/clock alignment, set-up and hold times. While this is shown to be common between all
connectors, there will likely be some variation, for example the Gigabit connector might not have separate
clock and data pins.

Trace: A form of debugging where processor or system activity is made externally visible in real-time or
stored and later retrieved for viewing by an applications developer, applications program, or, external
equipment specializing observing system activity.

Trace Channel: A group of one or more signals and a clock that move trace information from the TS to the
DTS. There may be more than one Trace Channel between the TS and DTS.

Trace Data Protocol: The implementation-specific encoding of a particular type of trace by a particular
module.

Trace Port: An output port for the transmission of real-time data indicating the operation of the target (e.g.,
program execution and/or data bus transactions). Data transmitted across the Trace Port may be generated
by hardware, software instrumentation, or by a mixture of the two. This does not include trace collected on-
chip for later upload.

Trace Port Analyzer (TPA): An external hardware unit for collecting data transmitted from the Trace Port.
The data might be stored locally in real time before uploading to the host debug tools for later analysis by
the user, e.g., a logic analyzer or a unit customized to record trace information would both qualify.

Trace Wrapper Protocol (TWP): A protocol that wraps trace from different sources into a single stream
for simultaneous capture by a single TPA. See [MIPI04] and [MIPI04a].

Trigger: An indication that a specific system event has occurred. A trigger may be an input to the TS, a
signal within the TS, or an output from the TS. The response to the trigger is determined by the entity to
which the trigger is sent.

2.2 Abbreviations

e.g. For example (Latin: exempli gratia)

ie. That is (Latin: id est)

2.3 Acronyms

AC Alternating Current
BIST Built-in Self-Test
cccC Common Command Code
CPU Central Processing Unit
DACS Debug Access and Control Subsystem
DDR Double Data Rate
DFT Design for Test
DIP Data Integrity Package
DIVS Debug Instrumentation and Visibility Subsystem
DNI Debug Network Interfaces
DPI Debug Physical Interfaces
Copyright © 2014-2021 MIPI Alliance, Inc. 5
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97 DSP Digital Signal Processor
98 DTC Debug and Test Controller
99 DTI Debug and Test Interface
200 DTS Debug and Test System
20 DTT Debug and Test Target
202 GbD Gigabit Debug
203 GbT Gigabit Trace
204 HTI High-speed Trace Interface
205 HW Hardware
206 13C Improved Inter Integrated Circuit
207 ID Identifier
208 IEEE Institute of Electrical and Electronics Engineers
209 1P Intellectual Property
210 IPS Internet Protocol Sockets
IPR Intellectual Property Rights
ISTO Industry Standards and Technology Organization
JTAG Joint Test Action Group

214 microSD Micro Secure Digital

215 MMC MultiMediaCard

216 NIDnT Narrow Interface for Debug and Test
217 nTRST Not Test Reset

218 OFM Original Functional Mode

219 oS Operating System

220 PC Personal Computer or Program Counter
PCB Printed Circuit Board

PHY Physical Interface

POR Power on Reset

224 PTI Parallel Trace Interface

225 RF Radio Frequency

226 RTCK Return Test Clock

227 SIM Subscriber Identity Module

228 SoC System on a Chip

229 SPP SneakPeek Protocol

230 SPTB SneakPeek Transfer Block
ST™M System Trace Module
6 Copyright © 2014-2021 MIPI Alliance, Inc.
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STP System Trace Protocol
STS Silicon Test Subsystem
SW Software

SWD Serial Wire Debug

SyS-T System Software Trace
TAP Test Access Port

TCK Test Clock

TCKC Test Clock Compact

TCP Transmission Control Protocol
TDI Test Data Input

TDIC Test Data Input Compact
TDO Test Data Output

TDOC Test Data Output Compact
TDP Trace Data Protocol

T™MS Test Mode Select

TMSC Test Mode Select Compact
TPA Trace Protocol Analyzer
TS Target System

TWP Trace Wrapper Protocol
UDP User Datagram Protocol
USB Universal Serial Bus

WG Working Group

2.4 Use of Inclusive Language

Architecture Overview for Debug

The MIPI Alliance is committed to the use of inclusive language in its specifications and documentation.
Terms such as “master” and “slave” are being replaced with better, more descriptive terms and the MIPI
Alliance is actively updating its documentation to use the new inclusive language. This document will no
longer include these non-inclusive terms and the reader will notice the new language.

Note that at the time of publication, not all the documents referenced in this document were updated. The
table below is a list of the legacy terms that have been updated in this document with the new inclusive

language.

Referenced Specification

Legacy Term

New Term

Debug for I3C

Master

Controller

Multi-Mastering

Multiple Controller-capable

NS}
[e))

Slave Target
STP Master Major Source
Copyright © 2014-2021 MIPI Alliance, Inc. 7
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Alliance, Inc., 21 August 2015.

MIPI Alliance Specification for Trace Wrapper Protocol (TWP™), version 1.00.00, MIPI
Alliance, Inc., 23 February 2010.

MIPI Alliance Specification for Trace Wrapper Protocol (TWP™), version 1.1, MIPI
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4 Debug System

41 System Framework

The modern systems on a chip often have complex Debug and Test architectures. In a simplistic view, the

modern SoC Debug and Test architecture can be broken down into the following major subsystems:

¢ Debug Access and Control Subsystem (DACS) — This subsystem provides a path for the DTS to

obtain direct access to application visible system resources (registers and memory). It also

provides bidirectional communication for configuration and control of debug specific modules in
the TS. The communication between the debug and the DACS is generally implemented via one of

the following (this is not an exhaustive list):
e Serial scan via a dedicated Debug and Test interface on the device

e Memory mapped using a dedicated debug interconnect or in some cases the application visible

system interconnect
e A proprietary communication protocol and interface on the device boundary
¢ Debug Instrumentation and Visibility Subsystem (DIVS) — This subsystem provides

communication and storage of data generated by debug instrumentation modules (like processor
and system trace) in the target system. DIVS communication path to the DTS is usually via high-

speed serial or trace interfaces and is generally unidirectional.

o System Test Subsystem (STS) — This subsystem supports communication between the DTS and

the on-chip logic used for production test (boundary scan, BIST, etc.). Access to the STS is
generally accomplished via serial scan.

¢ Debug Physical Interfaces (DPI) — The physical interfaces that support debug at the SoC
boundary and on the PCB.

o Debug Network Interfaces (DNI) — The internal interfaces that allow debug and trace data to be
transmitted to and from the DTS on functional networks. This communication is with dedicated

intelligent resources (sometimes called the Debug Butler) that possibly:

e Enable bare metal debug on systems where the normal functional communication management

is not yet functioning

¢ Allow debug to minimize or eliminate the use of functional resources for managing debug
communications

Copyright © 2014-2021 MIPI Alliance, Inc.
All rights reserved.
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334 Figure 1 provides a top-level view of how all the pieces of the Debug and Test architecture are integrated

335 on a device.
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Figure 1 MIPI Debug Generic System Framework

Copyright © 2014-2021 MIPI Alliance, Inc.

12
All rights reserved.



P O W 0 I

w W w w w w
S s W W W

N

w
IS
w

Version 1.3 Architecture Overview for Debug

19-Mar-2021

4.2 The MIPI Debug and Test System

The MIPI Debug WG effort does not address all the functional blocks in the generic framework. The
Debug WG standards and recommendations focus on device and board interfaces and protocols. There is
also an effort to standardize on communications for debug instrumentation (i.e., trace protocols), but with a
generic approach that maintains compatibility with protocols that already exist. Figure 2 illustrates the
areas of the framework that are targeted by the various MIPI Debug specifications and recommendations

addressed in this document.
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Figure 2 MIPI Debug Documentation and the Debug Architecture

Copyright © 2014-2021 MIPI Alliance, Inc.
All rights reserved.

13



344
345
346

348

Architecture Overview for Debug Version 1.3
19-Mar-2021

Figure 3 shows a more detailed block diagram showing how the generic debug framework can be realized
across an entire multiple-chip system. The devices share the basic debug, trace and functional interfaces.
Basic run control can be provided via the shared debug connection. Trace transport can utilize a shared link
dedicated to trace or a standard application visible network. In all cases, the footprint of the debug interface
to the tools is greatly reduced.

SoC Soc SOC
Basic T Basic T Basic i oatl
Trace Application Trace Application Trace Application
Debug |4 ; c Debug |4 C 5 Debug || © e
Finchons Functions Functions Finoioe Functions Functions Flnatan Functions Functions

4 4 P! t

Network T Network Stack =l
Stack
A 4 Debug Debug Y
[ Trace Port | PHY Port Port__| | Trace Port | [ PHY Port [ PHY Port [ PHY Port | Port Trace Port PHY Port
Application Application
And Trace Over ‘And Trace Over-
HS Link HS Link
B b Application "
asic Debug Shared Basic Debug Shared And Trace Over Shared
Parallel Parallel HS Link Basic Debug Parallel
Trace Trace Trace

Connector(s)

[ Debug and Test System ]

Figure 3 Example MIPI System Overview
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5 Debug Physical Interfaces (DPI)

5.1 Parallel Trace Interface (PTI) Specification

511 Trace and Debug Overview

It has become an accepted axiom that as the complexity of an embedded system increases, the need for
system designers and developers to obtain visibility into the behavior of the system increases
proportionally. One of the most common methods for providing this visibility is to provide a streaming
interface on an embedded System on a Chip. This interface can be used to export data about system
functionality and behavior to a host system for analysis and display. Since the data exported on this
interface often allows developers to reconstruct (or “trace”) some portion of system activity, these types of
interface have commonly been referred to as Trace Interfaces or Trace Ports. Examples of trace data
include:

e The instruction execution sequence for one or more embedded processors. This is commonly
referred to as Program Counter (PC) Trace.

o Data bus transactions made by an embedded processor core. This is commonly referred to as Data
Trace.

¢ Snapshots of transactions on the system interconnect(s). This is commonly referred to as System
Trace.

e Streaming output from instrumented application code. This is commonly referred to as
Instrumentation Trace.

The bandwidth requirements for the common trace functions listed above often compel system designers to
implement the trace interface as a parallel interface with multiple data signals and a clock. For purposes of
this document, the trace interface will subsequently be referred to as the Parallel Trace Interface or PTI.

Copyright © 2014-2021 MIPI Alliance, Inc. 15
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5.1.2 Relationship to MIPI Debug Architecture
Figure 4 shows the standard MIPI debug architecture highlighting the functional areas addressed by the

369
370 PTI specification.
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Figure 4 PTI in the MIPI Debug Architecture
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51.3 Trace Scenarios

A typical embedded system may have one or more HW modules that produce trace data. The typical flow is

outlined below and illustrated in Figure 5.
e Debug and Test Targets (DTTs) reside in the Target System (TS).
o Trace modules inside a DTT contain one or more HW sub-modules that capture the system
transactions with the required data. See the Trace Collect block in Figure 5.

¢ One or more HW modules encode or compress the data into an implementation specific
encoding(s). These encoding(s) are called the Trace Data Protocols (TDPs). See the Trace Format
block in Figure 5.

e One or more HW modules export the encoded data to the DTC using device pins. The interface
used to transfer this data is the Parallel Trace Interface or PTI. See the Trace Export block in
Figure 5.

e The DTC captures the data.

e The data is decoded and analyzed using the DTS.

Figure 5 Example System with PTI

Copyright © 2014-2021 MIPI Alliance, Inc.
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Note that only HW modules directly responsible for producing the data and clock of a PTI are required to
implement a PTI. Figure 6 shows how the PTI implementation is dependent upon system configuration.

Embedded System
Trace Trace Trace Trace Trace Trace
Module Module Module Module Module Module
1 2 3 4 B 6
\ 4 vV V
Pin Manager/ 1 \ 4
Mux
Trace Trace
Module 0 Interleaving and
odule Export Module
To Connector and DTC To Connector and DTC To Connector and DTC

I[ _______________________________________________________ |
| . Module Implementing an . :
: Module Implementing PTI Intemal PTI =1 Location of PTI |
|
: — —=pp  PTI Interconnect I
|
| Module Implementing . |
| Proprietary Interface «—pp  Proprietary Interconnect I
Ve o _______ i

Figure 6 PTI Layers within a System

The scenario for Trace Module 0 is reasonably straightforward. The module itself is directly connected to a
dedicated PTI on the device boundary and the module is responsible for implementing the PTI.

The scenario for Trace Modules 1-3 is slightly more complex. Here multiple modules export trace through
a device level pin manager or mux. This management logic is only responsible for controlling which pins
on the device PTI are assigned to the device internal trace clients. It does not produce the data and clock
signals for the PTI but only routes them from the various trace modules. Thus, the individual trace modules
are required to implement the PTI. Since the pin manager routes the internal PTI signals to the device
boundary, there is also a PTT at the device pins.

The scenario for Trace Modules 4—6 shows a system where multiple trace modules provide data over a
proprietary trace interconnect. This system allows data to be combined or interleaved in some fashion
before export. The interleaving and export module implements the PTI and the individual trace modules
communicate using implementation specific protocols that are beyond the scope of this document.

18 Copyright © 2014-2021 MIPI Alliance, Inc.
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5.1.3.1 Multi-Point Trace Connections

Version 2 of the PTI specification expands the interface description to include a shared trace connection
where multiple PTI interfaces are merged through a single connector on a PCB board. Multi-point PTIs are
very useful for supporting trace on fielded systems that have multiple trace-enabled ASICs but only a single
connector (with limited data pins) for interfacing to an external DTC. A standard example would be a
mobile terminal with an application and modem SoC and a single MIPI NIDnT connection.

Devices can be configured to drive data on a subset of the PTI signals on their boundaries. The PTI signals
are merged at the connector, but only one PTI is driving any given data signal. The clock for all the
interfaces is supplied from an external source (generally the DTC). Figure 7 shows an example with four
devices (each with 4-pin PTIs) sharing a connector with each of them only exporting on a single pin.

A similar configuration is shown in Figure 8, but in this scenario only two devices are active and the port is
shared as 3 pins and 1 pin. These are just examples, and the multi-point routing scheme defined in this
document supports varying PTI widths and numbers of devices.
Providing these enhanced features requires new operating modes for the clock and data portions of a PTI.
e Clock Modes
e PTI-out-clock Mode: The PTI sources the clock along with the data
e PTI-in-clock Mode: The clock for the PTI is an input to the module driving the PTI data
¢ Data Modes
¢ Point-to-point Data Mode: Data indexes are fixed on the PTI
e Multi-point Data Mode: Data indexes may shift across the PTI

Copyright © 2014-2021 MIPI Alliance, Inc. 19
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DTC

Figure 7 Multi-Point PTI with 4-Pin Trace and Four Devices Sharing the Connector
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Figure 8 Multi-Point PTI with 4-Pin Trace and Two Devices Sharing the Connector

5.1.4 Detailed Specification

For details of the MIPI PTI, consult the document: MIPI Alliance Specification for Parallel Trace Interface,
[MIPI02]. This specification is available to MIPI members and to the public through the MIPI website. The
public version of the specification can be found at: http://resources.mipi.org/mipi-pti-download.

Copyright © 2014-2021 MIPI Alliance, Inc. 21
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5.2 High-speed Trace Interface (HTI) Specification

5.21 Overview

Transferring data off-chip from high performance embedded microprocessor cores requires a data port with
sufficient trace data bandwidth. Parallel port implementations such as MIPI Parallel Trace Interface (PTI),
[MIPI02], employ a clock synchronous parallel interface, using as many as 32 parallel data lines to provide
the required bandwidth. Increasing CPU clock speeds and use of multiple processor cores demand
increasing data port bandwidth, while at the same time the number of I/O pins used for the data port is
being reduced to facilitate lower cost and a higher level of SOC/ASIC integration.

MIPI High-speed Trace Interface (HTI) is a serial implementation of the data port, taking advantage of
available high-speed serial interface technology used in interfaces such as PCI Express®, DisplayPort™,
HDMI®, or USB, provides higher transmit bandwidth with fewer I/O pins compared with a parallel
implementation. Unlike protocol specifications in the MIPI Gigabit Debug portfolio, such as [MIPI0S],
HTT is not designed to be used over the high-level protocols implemented by interfaces such as PCI
Express, but is intended to re-use the low-level physical high-speed portions of those interfaces, in a bare-
metal environment.

5.2.2 Relationship to the MIPI Debug Architecture

Figure 9 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
HTI specification.

-/

. i Debug SW
[ System Functional/Application Modules [ Kemel(s) J Gnstrumentation}

1 |

w
o) <) o »E o >5 Q) o z2 D
o = 5 23 ) ] = o = =& 40 0
S g3 | |82| | 28 £ |83 |58 | |82 | BSZlsTa||22||88
& a8 S %-2 &© gé}’ a8 - Z Z’g o 3 o R ® @
[
— -
TAP § A A A A
A 4 A4 A 4 A 4 A 4 Y v A 4
C Scan Interconnect ( Debug Interconnect D C Instrumentation Interconnect D)
A
A 4 A 4 A 4 A 4
»( System Interconnect
A\ A 4 l \ 4

=) 2Ty Zmo
%m 55 SOC =6 X

& SR ST o3 g
Q@ Q5 = o 8§
@ ® 8 3 A 3 o ~
» » K (-/ @

; PCB
_— ard Connector ) =— =—— =— — oard Connectol _———— oard Connector

4 Basic Debug ‘r Switched Functional and * High Performance High Perf
y Comms I/Fs V Debug I/Fs v Comms I/Fs y Debug l/Fs
[ Debug and Test System ]

| System Test Subsystem (STS) | [ Debug Instrumentation and Visibility Subsystem (DIVS) ]
| Memory Mapped Debug Access and Control Subsystem (M-DACS) |

| Scan Based Debug Access and Control Subsystem (S-DACS)

[ Debug Physical Interfaces

Figure 9 HTI in the MIPI Debug Architecture
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5.2.3 HTI Details

HTT defines a method to transport a single stream of trace information over a channel consisting of one to
eight high-speed serial lanes, using the Aurora 8B/10B protocol [AUROI]. HTI uses the serial simplex
mode of Aurora to transmit data in one direction from TS to DTS.

The HTI specification supports transmission of either the MIPI STP /MIPI03] protocol or MIPI TWP
[MIPI04a] protocol over an HTI channel.
The HTI specification consists of the following aspects:
e The LINK layer, which defines how the trace is packaged into the Aurora 8B/10B protocol.
e The PHY layer, which defines the electrical and clocking characteristics.
o A programmer's model for controlling HTI and providing status information.
In addition to the trace information, the HTT LINK layer provides the ability to include:
e Optional CRC data, to assist in detecting errors in the trace transmission.

o Optional User Flow Control messages, to indicate additional information about the trace data
stream.

5.2.4 Detailed Specification

For details on HTI, consult the MIPI Alliance Specification for High-speed Trace Interface (HTI),
[MIPI09]. This specification is available to MIPI members and to the public through the MIPI website. The
public version of the specification can be found at: http://resources.mipi.org/mipi-hti-download.
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5.3 Debug Connector Recommendations

5.3.1 Dedicated Debug Connector Overview

] Board developers, debug tools vendors and test tool vendors all benefit when the number of connectors and
458 connector pin mappings used to support Debug and Test is minimized. To this end, MIPI Alliance is
459  promoting a set of connectors and mappings that address a wide variety of debug use scenarios.

5.3.2 Relationship to the MIPI Debug Architecture
Figure 10 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
461 connector recommendation.
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5.3.3 Basic Debug Connectors

As the connector was not part of the original IEEE 1149.1 JTAG standard, a large number of different
JTAG connectors have emerged. The MIPI recommendation of standard connectors promotes convergence
toward a minimum set of debug connectors. The scalable 0.05 inch Samtec FTSH connector family
provides a cheap, small and robust target connection and is available in many variants (including lockable
ones) from multiple connector vendors. The pin-out allows scaling of the debug connection to meet
different requirements. This includes very small footprint connections (down to 10 pins), legacy JTAG
support (including vendor specific pins) and system level trace support (STM).

Missing pin and Plug at pin 7
for key.

Figure 11 Basic Debug PCB (left) and Cable End Connector (34-pin Samtec FTSH)

5.34 High-Speed Parallel Trace Connectors

Many debug tools vendors support target systems with high-speed trace interfaces. These tools utilize a
number of different mating connectors.

The MIPI Alliance Recommendation for Debug and Trace Connectors, [MIPI01], document defines two
connectors for supporting high-speed trace and basic debug. The first connector is only intended for
backwards-compatible designs. The second connector is recommended for new designs. The goal is to have
this recommendation define a “de facto” industry standard for the trace connection and thus lessen the
burden on target system and tools developers that need to support a large number of different mating
connections.

The recommended trace connector is a 60 pin Samtec QSH/QTH connector. The signal to pin mapping,
which is defined in the recommendation, supports one run control and several trace configurations. The
different trace configurations use up to 40 data signals and up to 4 clock signals. To minimize complexity,
the recommendation defines four standard configurations with one, two, three or four trace channels of
varying width.

Figure 12 Recommended Samtec QSH/QTH Connector
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5.3.5 Detailed Documentation

For details of the MIPI recommended connectors and connector pin mappings, consult the document: MIPI
Alliance Recommendation for Debug and Trace Connectors, /MIPI01]. This document is available to MIPI
members and to the public through the MIPI website. The public version of the specification can be found
at: https://mipi.org/sites/default/files/MIPI-Alliance-Recommendation-Debug-Trace-Connectors.pdf.
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5.4 Narrow Interface for Debug and Test (NIDnT) Specification

541 Overview

The MIPI Debug Working Group has standardized a way to utilize functional interfaces for debug or test.
This technology is called NIDnT (Narrow Interface for Debug and Test). It allows better debug support in
production or near-production units.

NIDnT technology defines low pin count, reliable, and high performance, debug interfaces that can be used
in deployed systems. These interfaces provide access to basic debug, trace of application activity, and HW
test capability by reusing already existing functional interfaces. In some cases, these interfaces are
accessible at the packaged boundary. This technology provides the means to use functional interfaces for
either functional or debug purposes. One or more functional interfaces (e.g., MMC card slot for trace and
USB for basic debug) may be used to provide debug capability. NIDnT technology does not aim to replace
current technologies such as debugging via a serial interface (e.g., GDB using a UART, or on-device debug
agent).

5.4.2 Relationship to the MIPI Debug Architecture

Figure 13 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
NIDnT specification.
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5.4.3 NIDNT Details

NIDnT technology has the potential for changing the product development paradigm as it provides for the
use of one or more of a product’s functional interfaces for debug. This can extend the availability of the
debug capabilities used in the early stages of product development to the latter stages. This is especially
valuable when these interfaces are available at the boundary of the product’s actual physical enclosure in
the product’s final form factor. This change in the product development paradigm is described in the
following paragraphs.

During the early stages of product development, IEEE 1149.1/1149.7/SWD/I3C based basic debug, trace of
application activity, and software messages sent over simple streaming interfaces like serial ports are
typically used for debug. Historically, much of this product development is performed using test or
development boards. These boards provide dedicated and readily accessible Debug and Test interfaces for
connecting the tools. A system with a dedicated debug interface is shown in Figure 14.

TS
SoC
@
Debug Interface 1/O Driver Pin § DTS
c
3]
Application Interface = Function Driver 1/O Driver Pin § Application
c

Figure 14 Example of System with a Dedicated Debug Interface

In most cases, a product’s final form factor does not have dedicated Debug and Test interfaces as these
interfaces are not propagated to the boundary of the product’s physical enclosure. This hampers the
identification of bugs present at this point in the product development.

A product might include a proprietary JTAG connector that requires some disassembly (e.g., removing the
battery cover and battery) and the use of a test fixture. The physically invasive process of accessing this
connector could itself cause bugs or RF performance issues to disappear, or new ones to appear.
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Figure 15 shows how NIDnT technology extends the use of functional interfaces for Debug and Test
purposes. It creates a dual use functional interface by multiplexing the debug signals with the normal
function signals within the SoC in a manner that is similar to a switch. Connecting either the normal
function or the debug function to the interface connects that function’s inputs and outputs to the interface.
Disconnecting either the normal function or debug function from the interface connects its inputs to
inactive default values that create the function’s inert operation while leaving its outputs unused. For
example, a SoC could multiplex an IEEE 1149.7 Test Access Port (TAP) and a Parallel Trace Interface
(PTT) over the functional I/Os that normally provide a microSD interface. In this case, the IEEE 1149.7
TAP could be used for both basic debugging and as a control channel for the trace function that utilizes the
PTI interface.

TS
SoC
Pin Management
Infrastructure (— k]
t 1/O Driver Pin §
S §
(&]
Debug Interface I
A
O @
1/0 Driver Pin § DTS
—
(&)
Application Interface = Function Driver

Figure 15 Example of System with NIDnT Capability

It is expected that adapters will be used to connect a product’s NIDnT Interface (e.g., microSD interface, or
USB) to the MIPI Debug Connectors (as defined in /[MIPI0OI]). The use of an adapter provides for
debugging the product in its final form factor with standard debug tools, as the adapter remaps the signals
presented by the tools on these standard debug connectors to the appropriate positions on the functional
connectors.

5.4.4 Debug and Test Capabilities Supported by NIDnT Overlay Modes

A NIDnT Interface supports an operating mode that provides all functional operation of the interface
(Overlay Mode 0, also called the Original Functional Mode (OFM)) and one or more non-OFM Overlay
Modes (Overlay Modes 1 through n) providing debug and test capability.

The debug and test capabilities that can be supported with these Overlay Modes are listed below with their
associated pin counts shown in parenthesis. These capabilities might be mixed and matched to provide one
or more combinations of debug and test capability within the limitations (pin count and drive
characteristics) of a specific functional interface or combination of interfaces. The combinations supported
for a specific NIDnT Interface are outlined in interface-specific sections of the NIDnT specification.
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Table 1 Summary of Test/Debug Capabilities Supported by NIDnT
Capabilit Interface with Interface with
y Single-Ended Electricals Differential Electricals
2-pin (Min-Pin) Debug 4-pin High-Speed Debug
o |EEE 1149.7 [IEEE02] ¢ Vendor Defined Differential Debug
e Serial Wire Debug [ARMO01]
e UART
e |3C
Basic Debug e Vendor Defined Single-Ended Debug
5-pin Legacy Debug
e |EEE 1149.1 [IEEEO01]
6-pin Modified Legacy Debug
e Modified IEEE 1149.1 Standard with
return clock (deprecated)
Single-Ended Trace High-Speed Trace
T o Parallel Trace Interface [MIPI02] e High-Speed Trace Interface (HTI)
race , - MIPI09]
¢ Vendor Defined Single-Ended Trace Il
¢ Vendor Defined Differential Trace
User Defined Vendor Defined Single-Ended Vendor Defined Differential

The trace function can either run with a clock shared with the 2-pin Min-Pin debug interface or run with an
independent clock. If the focus is on maximum trace bandwidth, a shared clock provides the largest number
of trace data pins but ties the data rate of each data pin to the clock rate of the 2-pin Min-Pin debug
interface.

Non-OFM Overlay Modes that support debug, i.e., that switch some of the NIDnT Interface pins to being
used for Basic Debug signals, are called Debug Overlay Modes (see table in the NIDnT Specification,
[MIPI05]).

5.4.5 Functional Interfaces that are NIDnT Candidates

The current version of the NIDnT Specification addresses the reuse of the following interfaces:
e microSD
e USB (USB 2.0 and USB Type-C™)
e Display (HDMI and DisplayPort (DP))
Future versions of the NIDnT Specification might support other interfaces including, but not limited to:
e SIM (smart card)
¢ UniPro

5.4.6 Detailed Specification

For details of NIDnT technology, consult: MIPI Alliance Specification for Narrow Interface for Debug and
Test (NIDnT), /MIPI05]. This specification is available to MIPI members and to the public through the
MIPI website. The public version of the specification can be found at: http:/resources.mipi.org/mipi-nidnt-
download.

30 Copyright © 2014-2021 MIPI Alliance, Inc.
All rights reserved.



http://resources.mipi.org/mipi-nidnt-download
http://resources.mipi.org/mipi-nidnt-download

(S INE; ING BNC, B E|
[ K ) e
J o U1 b

oY O O

o
(e}

Version 1.3 Architecture Overview for Debug
19-Mar-2021

6 Debug Access and Control Subsystem (DACS)

6.1 IEEE 1149.7 Debug and Test Interface Specification

The 1IEEE 1149.7 standard [IEEE02] supports the needs of both Debug and Test. It is a superset of the
IEEE 1149.1 standard [IEEEQI] and represents a natural evolution of this standard. This approach
preserves the industry’s hardware and software investments in the IEEE 1149.1 standard since its inception.
While this is not a MIPI specification, the min-pin debug effort started in MIPI, so it is included here to
help complete the debug framework. The standard:
» Provides a substantial, yet scalable set of additional debug related capability
e Supports multiple connection topologies
e Four-wire series or star
e Two-wire star
o Halves the width of the interface in two-wire star configurations while maintaining performance
Six capability classes (TO-T5) are supported, with the implementer selecting the capability class
implemented. A class defines both mandatory and optional capability. Class capability increases
progressively, with the capability of a class including the capability of all lower numbered classes.

Capability classes TO-T2 support operation with the four-wire Test Access Port (TAP) (defined by the IEEE
1149.1 standard) connected in a four-wire series topology. Each of these classes incrementally extends the
IEEE 1149.1 capability while using only the Standard Protocol defined by the IEEE 1149.1 standard.

Capability classes T3 additionally supports deployment in a four-wire star topology.

Capability classes T4-T5 provide for implementing devices with either a four-wire TAP (IEEE 1149.1 style)
or a two-wire TAP (unique IEEE 1149.7 style). Devices with the four-wire TAP configuration can be
operated in all connection topologies. Devices with the two-wire TAP configuration can be operated only in
a two-wire scan topology.

The T4-T5 classes incorporate the Advanced Protocol. The Advanced Protocol provides for the joint use of
the TAP for real-time system instrumentation, classic debug, and test, using only the TCKC and TMSC
signals as it:

o Redefines the functionality of the IEEE 1149.1 TCKC and TMSC signals
¢ Eliminates the need for the TDIC and TDOC signals
o Allows the use of the TAP for both scan and non-scan data transfers

The combination of a two-wire TAP and use of the Advanced Protocol provides the capability of a five-
wire IEEE 1149.1 TAP using only two signals, plus additional system debug capability.
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A high-level view of the IEEE 1149.7 interface connectivity between a DTS and TAPs within the TS is
shown in Figure 16. Both the four-wire (wide) and two-wire (narrow) TAP configurations are shown with
an optional test reset signal. A deprecated non-standard return clock signal is also comprehended with the
four-wire configuration (the use of this and other non-standard signals is strongly discouraged by the
standard).

Debug and Test System .. on wide Target System
nTRST | | .' DInTRST
TCK(C) TCK(C)
IEEE 1149.7 TMS(C) TMS(C) |EEE 1149.7
Circuitry  TDO(C) TDO(C) Circuitry
TDI(C) 5 TDI(C)
RTCK RTCK

Although TCKC is shown as bidirectional it is sourced by either the DTS or the TS

. > Optional reset signal
M Required for operation with standard/advanced protocols

>
>

Required for data transfers with standard protocol

Non-standard 1149.1 extensions (deprecated functionality)

Figure 16 DTS to TS Connectivity

All capability classes begin operation using the Standard Protocol. IEEE 1149.7 operation is compatible
with IEEE 1149.1 from power-up, with the function of TCK(C) and TMS(C) signals providing the
functionality (or a superset thereof) of the TCK and TMS signals that is specified by the IEEE 1149.1
standard.

All IEEE 1149.7 based devices may be implemented in a manner that allows their use in system
configurations where there is:
¢ A mix of components implementing different capability classes
¢ A mix of connection topologies
The DTS can use facilities defined by the standard to determine the following:
o The types of connection topologies deployed within the TS
e The component mix with the TS:
e 1149.1 components
e 1149.7 components + class of each component
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6.1.1 Relationship to MIPI Debug Architecture
Figure 17 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
IEEE 1149.7 standard.
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Figure 17 IEEE 1149.7 in the MIPI Debug Architecture

6.1.2 Detailed Specification
5 For details of the 1149.7 specification, consult the document: IEEE 1149.7 Standard for Reduced-pin and
16 Enhanced-functionality Test Access Port and Boundary Scan Architecture /IEEEQ2].
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6.2 SneakPeek Specification

The SneakPeek framework is intended to enable debugging of a Target System via standard network
connection. This is accomplished by moving a portion of the Debug and Test Controller function onto the
SoC. These embedded DTC functions can be reached by network communication links that previously have
not been leveraged for DTC-like debug. SneakPeek also leverages a significant portion of the on-chip
debug infrastructure. As a result, DTC tools that previously used dedicated debug links (e.g., 1149.7 or PTI)
can easily be ported to work in a SneakPeek framework through simple network adaptor layers. The
identical capabilities realized via the dedicated debug interfaces should be available via SneakPeck (with
possible performance penalties).

6.2.1 Relationship to MIPI Debug Architecture

Figure 18 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
SneakPeek specification.
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Figure 18 SneakPeek in the MIPI Debug Architecture

6.2.2 Overview

The SneakPeek Protocol (SPP) is used to communicate between a Debug Test System (DTS) and a Target
System (TS). This communication facilitates using Debug Applications (typically software) within the DTS
to debug the operation of the TS.

The SneakPeek Protocol abstracts the system designer from dedicated debug communication interfaces
such as JTAG and replaces them with the familiar mechanism of address-mapped read and write
transactions to enable the Debug Applications to observe, interrogate and adjust the Target System. These
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transactions might be addressed to main system memory, special function memories, or address-mapped
peripherals within the TS.

If the system requires legacy dedicated debug communication interfaces to be used internally within part of
a system, then these could be constructed by a dedicated address-mapped peripheral within the Target
System that is then accessed by the DTS via SneakPeek.

Figure 19 illustrates the route by which one or more debug software applications in a DTS utilize
SneakPeek Memory Agents within a TS to perform address-mapped transactions for them.
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SneakPeek Network Adaptor

Network Stack
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Network Stack

SneakPeek Network Adaptor

SneakPeek Manager
I

Other Clients Other Clients

Transaction Mapping

Debug Application(s)

Figure 19 Overview of SneakPeek System

The basic communication units used by SneakPeek are SneakPeek Command Packets sent from the DTS to
the TS, and SneakPeek Response Packets sent from the TS to the DTS. To provide more efficient
interactions with the communication network, the DTS packs typically many Command Packets into a
single SneakPeek Transfer Block (SPTB) before handing this over to the network driver for transmission to
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646 the TS. Similarly, the TS packs typically many Response Packets into a single SPTB for transmission to the
647 DTS.

648 Figure 20 shows how the SneakPeek Protocol is built on top of existing network infrastructure.
System
Debug Debug Debug & Debug
Application || Application || Application Memory Maps
Transaction | | Transaction | | Transaction A
Mapping Mapping Mapping Address-mapped
A A A reads & writes
Debug Debug Y
Requests Requests Memory
; v { Agents
SneakPeek
SneakPeek
Command
Manager .
Engine
gneakPezk A SneakPeek SneakPeek“ SneakPeek
Ponllrrl[an Response Command Response
inaSCP?I'gs Packets Packets Pascﬁ'tg
in SPTBs in SPTBs y" s
Network SneakPeek
Adaptor Network
Adaptor
Network Data Network Data
Transport Units Transport Units
Y Y
Network Network
Stack Stack
A A
Y Y
PHY - O > PHY
649
Figure 20 SneakPeek Protocol and Network Stacks in DTS and TS
650 In summary:
651 e The DTS sends SneakPeek Command Packets grouped into SPTBs to the TS over a data
652 communication network.
653 e These Command Packets cause an action or effect in the TS, typically an address-mapped read or
654 write transaction. The Command Engine generates a Response Packet corresponding to each
655 Command Packet (with some special case exceptions).
656 e The TS sends SneakPeek Response Packets grouped into SPTBs to the DTS over the data
657 communication network.
658 o The SneakPeek Packets in a stream have a defined order at their source and are interpreted in this
659 order at their destination. The SneakPeek Protocol is not concerned with actual transmission order
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over the physical or other layers of the network stack but assumes that the network reconstructs
the original order before handing off the SneakPeck Packets at their destination.

6.2.3

SPP version 2.0 introduces TinySPP, an “optimized” style of the SneakPeek Protocol focusing on low
bandwidth interfaces and “tiny” implementations. TinySPP provides a reduced feature-set (e.g., no
sequence number, reduced access space, reduced direct addressing space, and no access size variability)
and “coexists” with SPP version 1.0, or FullSPP. Reducing the size of the Command and Response Packets
is done by assuming certain behaviors and by placing some restrictions on these interfaces. These
restrictions and assumptions are usually acceptable as a tradeoff for a smaller and simpler implementation
more tailored for lower bandwidth and/or half-duplex interfaces.

The main differences between the TinySPP and FullSPP styles are shown in Table 2.

Protocol Styles

Table 2 Comparison of SneakPeek Protocol Styles

Feature

TinySPP

FullSPP

Number of Access Spaces

8 (3-bit field)

32 (5-bit field)

Sequence Number

N/A.

Additional requirements to
network:

o Messages stay in order
e Guaranteed Delivery

e DTS/TS has to do book-
keeping for request/

Present

supported.

Short addressing is required in a
TinySPP implementation

response
Standard Size Field Chosen by TS Different options
Size of Transaction Byte 7 bits 16 bits
Count (TBC) Field
Short Addressing 6-bit address replacement N/A

Packet Alignment

Byte aligned

16-Byte aligned

Shortest Packet Length

4 Bytes

16 Bytes

Usage in MIPI Specifications

Debug for I13C

GbD for USB, GbD for IPS

6.2.4

Detailed Specifications

For details of the SneakPeek Protocol, consult the document: MIPI Alliance Specification for SneakPeek
Protocol, /MIPI06]. This specification is available to MIPI members and to the public through the MIPI
website. The public version of the specification can be found at: http://resources.mipi.org/mipi-spp-v2-
download.
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7 Debug Instrumentation and Visibility Subsystem (DIVS)

71 Instrumentation and Visibility Subsystem Overview

The DIVS is basically a network or interconnect that allows trace data to flow from various sources to the
trace data sink (generally the DTS). The DIVS architecture provides a rich set of features that can be
utilized to effect this purpose:

e Trace protocols such as the System Trace Protocol (STP) that provide a standard encoding for
trace from multiple different HW and SW sources.

e Trace merge protocols such as the Trace Wrapper Protocol (TWP) that can be used to combine
many different trace streams into a single stream of data for easy transport management.

e Trace network protocols like the Gigabit Trace (GbT) and network adaptor specifications that
define how trace data should be formatted for transport over standard network links.

7.2 System Trace Protocol (STP) Specification
Real-time trace has become an indispensable tool for debugging and optimizing embedded systems. This
trace can come from a variety of sources, including:

e Trace components monitoring processor instruction and data flow.

¢ Instrumentation in the software running on a processor.

e Trace components monitoring activities outside the processor.
Each trace source has its own protocol, and these protocols share a number of common required features.
The System Trace Protocol (STP) is a base protocol which provides these common features.
The advantages of this shared approach are:

e Reuse reduces the time and cost of designing new protocols, as well as IP and tools supporting
them.

o Commonality of features enables greater interoperability, for example by providing time
correlation between multiple trace streams.

¢ A robust base protocol ensures common protocol design mistakes are avoided.

The STP specifications were developed to leverage the advantages listed above. STP was not intended to
supplant or replace the highly optimized protocols used to convey data about processor program flow,
timing or low-level bus transactions. It is anticipated that STP data streams will exist side by side with
these optimized protocols as part of a complete debug system.
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7.21 Relationship to MIPI Debug Architecture

700 Figure 21 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
701 STP specifications.
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Figure 21 STP in the MIPI Debug Architecture

7.2.2 Protocol Overview

703 STP was developed as a generic base protocol that can be shared by multiple, application-specific trace
704 protocols. STP was not intended to supplant or replace the highly optimized protocols used to convey data
705 about processor program flow, timing or low-level bus transactions. STP is designed so that its data streams
706 coexist with these optimized protocols as part of a complete debug system. The STP protocol is now in its

707 second generation (STPv2) which is backward compatible with the first generation.
708 STPv2 includes the following features:

709 e A trace stream comprised of 4-bit frames (nibbles)

710 e Support for merging trace data from up to 65536 independent data sources

711 ¢ Up to 65536 independent data Channels per Major Source

712 ¢ Basic trace data messages that can convey 4, 8, 16, 32, or 64-bit wide data

713 ¢ Time-stamped data packets using one of several time stamp formats including:
714 e Gray code

715 ¢ Natural binary

716 ¢ Natural binary delta

717 e Export buffer depth (legacy STPv1 timestamp that requires DTC support)
718 o Data packet markers to indicate packet usage by higher-level protocols

w0

o Flag packets for marking points of interest (for higher-level protocols) in the stream
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e Packets for aligning time stamps from different clock domains

o Packets for indicating to the DTC the position of a trigger event, which is typically used to control
actions in the DTC; for example, to control trace capture

o Packets for cross-synchronization events across multiple STP sources

o Support for user-defined data packets

o Facilities for synchronizing the trace stream on bit and message boundaries

e Optional support for data integrity protection of the trace stream

o Add data integrity package (DIP) to facilitate error detection over noisy connections

o Platform Description ID (PDID) packet types to carry payload information identifying the
platform the trace was captured and describe the contained trace data formats to enable processing
tools to auto-detect the format of the individual traces received from the trace stream itself.

Figure 22 shows the conceptual hierarchy of the different terms described in this specification. The clouds
are elements from the data model.

A stream of STP packets generally contains data from a number of different Major Sources, which in turn
may each have a number of different Channels. These two levels of hierarchy may be used, for example, to
distinguish different software applications (Channels) running on different processors (Major Sources).

SN
/
\v+v

Channel Channel Channel Channel
- '->
/
/
—_ =
sz, (P2 Major Source Major Source
— P
P Data
\< Integrity
/ ~ - ) Protection,
~
STP stream € —

Figure 22 Conceptual Hierarchy of STP Major Sources and Channels

Figure 23 shows an example of a target system that utilizes a module implementing the System Trace
Protocol. In this example, the STP data is transferred to the DTC across a PTI.
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Figure 23 STM in a Target System

The timing diagram in Figure 24 shows an example of the STP packets that might be transferred to the
DTC in such a system. This example shows the end of a synchronization sequence followed by a series of
16-bit data packets on Channel 4 of Trace Source (Major Source) 3.

:X1111X1111X1111XooooX1111XooooXooooXmooXoomXooooXoo11>—‘

End of ASYNC VERSION = 4 M8 =3 |

- <0011 XooooXmooXmm Xooo1 Xoo1oXoo11 Xo1ooX0101 X:

C8 =4 D16 = %x1234 D16—

Time >

Figure 24 Example STP Packet Sequence

7.2.3 Detailed Specification

In addition to the current version 2.2 of the MIPI STP Specification, version 2.3 is under development in
the MIPI Debug Working Group and is expected to be available in 2021. Version 2.3 will add a new
Platform Description ID packet for identifying the correct decoder(s).

For details of MIPI STP, consult the document: MIPI Alliance Standard for System Trace Protocol
Specification Version 2.2, [MIPI03]. This specification is available to MIPI members and to the public
through the MIPI website. The public version of the specification can be found at:
http://resources.mipi.org/mipi-download-system-trace-protocol.
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7.3 Trace Wrapper Protocol (TWP) Specification

7.3.1 Overview

The Trace Wrapper Protocol (TWP) enables multiple source trace streams to be combined (merged) into a
single trace stream. The basic principle is that the source trace streams (byte streams) can be assigned
system unique IDs. A wrapping protocol is then used to encapsulate all the streams in the system
identifying them with these IDs. This protocol also includes provisions for synchronizing the merged
output stream and providing inert packets for systems that cannot disable continuous export of data. It has
optional facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event,
which is typically used to control actions in the DTC, for example to control trace capture.

This specification is complementary to the MIPI Alliance Specification for Parallel Trace Interface (PTI),
[MIPI02], and to the MIPI Gigabit Debug network adaptor specifications, such as /[MIPI07]. 1t is intended
to be used by any module or layer that merges multiple trace data streams. The ultimate destination of the
merged streams might include:

e Host debug tools via a dedicated trace export interface (PTI)
¢ On-chip capture into a dedicated trace buffer
¢ On-chip capture into general system memory
e Host debug tools via a functional network (GbD)
This specification is also complementary to the MIPI Alliance Specification for System Trace Protocol,

[MIPI03], enabling a trace output to be shared between sources that implement STP and logic that
implements other trace protocols.

This specification is equivalent to the Trace Formatter Protocol specified in the Arm® CoreSight™
Architecture Specification, [ARM01].
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7.3.2 Relationship to MIPI Debug Architecture

Figure 25 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
TWP specification.
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Figure 25 TWP in the MIPI Debug Architecture

7.3.3 TWP Features

The features of TWP are summarized below:

o Allows up to 111 source trace streams to be represented as a single stream and later separated by
either hardware or software.

e Requires low additional bandwidth.

e Minimizes the amount of on-chip storage required to generate the protocol.

e Permits any source trace stream to be used, regardless of its data format.

o [s suitable for high-speed real-time separation of the component trace streams.

o Is a bit stream that can be exported using any transport that supports bit stream data.

e Can be efficiently stored to memory whose width is a power of two for later retrieval.

o Has facilities for synchronization points so decode can be accomplished even if the start of the
trace is lost.

o Has facilities for indicating to the Debug and Test Controller (DTC) the position of a trigger event,
which is typically used to control actions in the DTC, for example to control trace data capture.

o Has facilities for padding the data output for scenarios where a transport interface cannot be idled,
and valid data is not available.
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7.3.4 TWP Description

Each trace source, whose output is to be wrapped by TWP, is given a 7-bit trace source ID. The trace
consists of a number of Trace Fragments, each consisting of an ID indicating the source of the trace and at
least one byte of data.

If the source trace stream cannot be naturally represented using a stream of bytes, then an additional
protocol specific to the source trace stream has to be implemented in order to convert the source trace
stream into a stream of bytes.

7.3.5 Layers

TWP is split into the following layers:

e Layer T1: Flow Control. This layer enables TWP to be used over a connection which requires
continuous communication, for example PTI in situations where the clock cannot be stopped.

e Layer T2: Alignment Synchronization. This layer enables the alignment of frames in Layer T3 to
be determined.

e Layer T3: Data. This layer conveys trace data using 128-bit frames.

Interleaved
trace streams

T3
T2
T1
v
Trace sink Trace sink Trace sink
without flow . . )
with flow control with alignment
control

e.g. storage in
memory on 16-byte
boundaries.

e.g. PTI continuously e.g. PTl where clock
supplied with data can be stopped.

Figure 26 Example Use Cases for Layers T1, T2 and T3

7.3.6 Detailed Specification

For details of MIPI TWP, consult the document: MIPI Alliance Specification for Trace Wrapper Protocol,
[MIPI04] and [MIPI04a]. This specification is available to MIPI members and to the public through the
MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-twp-
download.
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7.4 Gigabit Trace (GbT)

741 Summary

One of the primary functions of the DIVS is to provide means to organize on-chip data and transport it to
an external Debug and Test System for analysis. Historically, this data path used dedicated interfaces on the
SoC boundary (the Parallel Trace Interfaces introduced earlier). In some system scenarios, however, it is
desirable to transport the trace data via networks and interfaces which are shared with traffic sent by the
mission mode (normal) functions of the device. Leveraging functional interfaces and transports for debug
enhances the capabilities of the debug systems in scenarios where debug over dedicated interfaces is
difficult or impossible. Gigabit Trace (GbT) focuses on the sharing of standard communication channels for
debug.

The GbT architecture is a layered system. The GbT System facilitates packaging trace data as a stream of
GbT Network messages suitable for transport over a shared network and/or interconnect. It defines a
network independent set of data packets that are shared (but not required) by all network transports.

A Gigabit Trace system also requires a Network Adaptor that consumes GbT Network Messages and
produces a message stream compatible with the targeted transport. The network adaptor layers are generally
called Gigabit Debug Adaptors since they often support other network capable debug protocols like
SneakPeek. The goal is to define MIPI Gigabit Debug network adaptor specifications for all the common
transports found in different systems.

74.2 Relationship to MIPI Debug Architecture

Figure 27 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
Gigabit Trace specifications.
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Figure 27 Gigabit Trace and the MIPI Debug Architecture
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74.3 Gigabit Trace System Overview

The TWP has facilities to readily adapt trace streams for export over the high-speed network interfaces
present on different systems. As these functional interfaces are now supporting extremely high data rates,
the term Gigabit Trace (GbT) has been coined. In a GbT system, the trace stream can co-exist on the
network link with other (functional) data traffic and the debug tooling is an application layer client on the
network. This approach enables trace capture in fielded systems where dedicated debug connections are not
available. It also enables trace capture in the DTS using any host system (such as a high-performance PC)
that supports a high-speed network interface and can store data at high data rates.

Figure 28 and Figure 29 show a typical GbT system and the data flow in the TS and the DTS. These
figures are abstract functional diagrams that illustrate data flow through the system. The individual blocks
only define functions that likely exist in the system, not HW or SW modules with defined interfaces and
behaviors.

Trace Source Trace Source Trace Source
. | I 1

Multiple
Trace v v v
Streams Arbitration ‘

’ Merge ‘ Application Application
TWP Function Function

— | :

Frames t

’ GbT Network Adaptor ‘
GbT | ......................... :
Network e v v v
Messages | Operating System |

3

Functional

NEWOrK  com—)
Traffic

Figure 28 Typical GbT Configuration and Data Flow (TS)
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Figure 29 Typical GbT Configuration and Data Flow (DTC and DTS)

Note that in the TS, the GbT data path may optionally use the low-level OS to merge trace data with other
(functional) network streams. This is obviously more intrusive to the system function than a direct data path
to the lower levels of the network stack (also shown). A more SW-intensive system might ease the
complexity of the HW required to support GbT and it is anticipated that both approaches will be utilized.

The MIPI GbT solution builds on the MIPI TWP data primitives. The MIPI GbT solution uses a GbT
Network Adaptor (in the TS and DTS) to isolate generic GbT from the properties of a specific Network
Stack. A typical GbT system might adapt trace for export over a USB interface (USB 2.0 or 3.0 depending
on bandwidth requirements).

The MIPI Debug Working Group will produce independent specifications defining how a GbT system can
be realized on various transport networks. These Adaptor specifications will provide the details on how to
map the GbT framework outlined in this Annex to specific constraints and capabilities of a particular
transport network.

744 Requirements Summary

A GbT system generally addresses the following requirements:
e Provides a mechanism to convey high bandwidth trace data over a transport network.
e Compatible with a variety of transport networks.
e Packages trace data streams into network-independent messages.

¢ Builds on existing network protocol specifications (referred to as the functional or transport
network).

7.4.5 Detailed Specification

The details of the Gigabit Trace framework are outlined in an annex to the MIPI Alliance Specification for
Trace Wrapper Protocol, version 1.1.

For details of the Gigabit Trace framework, consult the document: MIPI Alliance Specification for Trace
Wrapper Protocol, [MIPI04a]. This specification is available to MIPI members and to the public through
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860 the MIPI website. The public version of the specification can be found at: http://resources.mipi.org/mipi-
861 twp-download.

7.5 STP and TWP in the DIVS

862 At first inspection, it might seem that STP and TWP have significant functional overlap. Both support the
863 merging of trace data from multiple trace sources. They also have facilities for stream synchronization and
864 alignment. A more detailed analysis, however, reveals that the protocols are optimized for different
865 capabilities and the differences in the protocols complement each other in a complex trace infrastructure.

866 TWP has a very uniform packet structure that is optimized for encoding and decoding interleaved byte

867 streams. The protocol can be implemented easily in HW and the ability to switch active trace streams on
868 any byte boundary decreases the amount of buffering required to support frame creation. The fixed data
869 frame also simplifies mapping TWP to some other transport protocol payload (the GbT scenario). TWP is
870 thus ideal for trace data paths where many high-bandwidth trace sources are merged before export on a
871 high-performance link.

872 These high-throughput requirements extend into the DTS as well. The fixed frames of TWP enable efficient
873 decode of the captured trace stream. The DTC hardware can remove lower-level link maintenance packets
874 (synchronization and padding) before the higher-level data is stored. This type of filtering is highly
875 desirable when supporting systems where constraints dictate that the trace interface cannot be halted (e.g., a
876 multi-point data mode PTI).

877 While STP also supports merging of trace streams, the protocol also provides features that assist high-level
78 trace protocol (e.g. time stamps, frame markers, and hierarchical source IDs). These features greatly
879 decrease the complexity at the trace source. These sources do not have to worry about supporting their own
880 methods of time stamping or frame marking within their own protocols. The hierarchical IDs enable
881 support for complex trace topologies (e.g., software message traces from multiple processes on multiple
882 CPUs). Supporting these features increases the complexity of a module merging the data from various
883 sources into an STP stream. Since the interleaving boundary for STP is the non-fixed STP message
884 boundary, the modules implementing STP might require significant buffering and pipelining to achieve
885 high throughput. STP is thus ideal for trace data paths that might not have extreme bandwidth requirements
886 but support many trace sources (such as SW threads or small HW modules) generating trace.
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Figure 30 shows an example of a DIVS architecture that uses the various MIPI protocols and specifications
in a layered approach to trace export. SW and HW messages, encoded as STP messages (comprised of STP
packets) are transferred on the trace interconnect. High-bandwidth processor trace byte streams are also
present on this interconnect. These various trace byte streams are interleaved using TWP and the packets
89 are either exported directly to the pins or collected into GbT Network Messages for adaptation to a
892 functional network protocol.

System Interconnect
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HW SW
Instrumentation CPU Core Instrumentation CPU Core
Module Module
Processor Trace Processor Trace
STP STP I
Trace I Proprietary
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Trace Wrapper
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Figure 30 Example Trace Architecture
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7.6 System Software Trace (SyS-T) Specification

7.6.1 Overview

System Software Trace (SyS-T) is a format for transporting software traces and debugging information
between a target system (TS) running embedded software, and a debug and test system (DTS), typically a
computer running one or more debug and test applications (debuggers and trace tools). SyS-T is primary an
OS independent software tracing protocol, but it can also be used on bare-metal or OS environments.

The purpose of SyS-T is to provide a common trace format to exchange information between a TS and a

DTS. SoCs contain many different software agents. For different operating systems there exist different,
specific tracing solutions. There is no common solution existing across different software/firmware and

hardware agents. MIPI SyS-T is aiming to fill this gap.

7.6.2 Relationship to MIPI Debug Architecture

Figure 31 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
SyS-T specification.
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Figure 31 SyS-T in the MIPI Debug Architecture
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7.6.3 Usage

SyS-T provides a platform independent general purpose trace protocol and software instrumentation library.
SyS-T defines a variety of trace messages ranging from simple UTF-8 based text and printf() style
messages to complex binary data payloads. SyS-T is suitable for trace data generation from non-OS, bare-
metal environments, as well as OS kernel and user mode software. The SyS-T specification enables vendor
independent trace debug tools development for environments that don’t already provide an established trace
standard. It does so by separating the trace generation on the TS from the decoding on the DTS into
independent tasks.

Today’s platforms or SoCs contain multiple agents that are producing traces send from a TS. Different
agents can be seen as independent from each other regarding trace generation. Additional logic like a trace
arbiter is used to combine the agents trace data fragments together into a single platform level data stream.
SyS-T does not replace the trace arbiter step. SyS-T is used directly inside the agents for generating the
SyS-T trace data the gets send to the trace arbiter. A system implementing SyS-T therefore owns one to
many independent SyS-T instances, depending on how many agents are using the SyS-T tracing method.

Application Processor
Other Trace Agents
(Software or Hardware) Application Software OS/Kernel Software
Trace Agent| |Trace Agent Trace Agent| |Trace Agent Trace Agent| |Trace Agent
SyS-T Other Protocol SyS-T Other Protocol SyS-T Other Protocol
Y Y Y Y Y Y
Trace Aggregator
T
]
]
]
]
v

Transport to DTS

Figure 32 SyS-T Instances in a Target System

7.6.4 SyS-T Instrumentation Library

The SyS-T Data Protocol generation is provided by a portable “C”-Language based software library called
SyS-T Instrumentation Library /MIPI11]. The SyS-T Instrumentation Library provides a function style API
(referred to as the SyS-T API) to software using pre-processor macros. This library serves as the reference
implementation for a SyS-T Data Protocol generator. The usage of this library is optional. Vendor-specific
implementations are allowed as long as the output is compatible with the SyS-T Data Protocol.
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7.6.5 Detailed Specification

In addition to the current version 1.0 of the MIPI SyS-T Specification, version 1.1, is under development in
the MIPI Debug Working Group and is expected to be available in 2021. Version 1.1 will include an
additional MIPI SyS-T packet type to support sending pure binary data packets.

For details of SyS-T technology, consult: MIPI Alliance Specification for System Software Trace (SyS-T),
[MIPI10]. This specification is available to MIPI members and to the public through the MIPI website. The
public version of the specification can be found at: http://resources.mipi.org/mipi-sys-t-download. In
addition to the specification, the Open Source code for the SyS-T Instrumentation Library with an example
implementation is posted on GitHub, /MIPI11].
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8 Debug Network Interfaces (DNI)

8.1 Gigabit Debug (GbD) Specification

8.1.1 Overview

Gigabit Debug (GbD) is the blanket terminology for mapping debug capabilities to a particular functional
network. Unlike NIDnT, the network interface and protocol stack function normally. Gigabit Debug just
defines how to adapt the SneakPeek and Gigabit Trace functions so that they can co-exist with other
network traffic (as normal application layer functions). While the goal of a GbD system is to minimize
intrusiveness of debug on regular system functions, it is acknowledged that some debug capabilities (like
trace) may require significant network bandwidth and will thus have the potential for significant impact to
the normal system.

The current effort focuses on mapping the network independent MIPI SneakPeek Protocol and Gigabit
Trace framework to networks commonly found in many systems. Some of the items addressed in Gigabit
Debug Specifications include:

e Connection/session initialization and de-initialization

o Network link management

o Packaging of MIPI protocol messages into network messages

e Mapping aspects of Basic Debug and Trace functionality to network features
o Network error handling

Figure 33 shows how the Gigabit Debug Adaptor specifications complement the specific MIPI debug
protocol specifications.
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Figure 33 Gigabit Debug Functional Block Diagram
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One of the fundamental features of GbD functionality is that it co-exists with non-debug network clients
and can operate quite effectively in multi-node networks that are commonplace today. Figure 34 illustrates
how GbD and non-debug network traffic are integrated in such networks.
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Figure 34 GbD in a Multiple-Node Network
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8.1.2 Relationship to MIPI Debug Architecture

Figure 35 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
Gigabit Debug specifications.
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Figure 35 Gigabit Debug and the MIPI Architecture

8.1.3 Detailed Specifications

Currently, the Gigabit Debug Specification addresses the following functional networks:
e USB
e For details of the Gigabit Debug adaptors for USB, consult the document: MIPI Alliance
Specification for Gigabit Debug for USB, /MIPI07]. This specification is available to MIPI
members and to the public through the MIPI website. The public version of the specification can
be found at: http://resources.mipi.org/mipi-gbd-usb-download.
e Supports both a MIPI-defined extension to standard USB Descriptors and the Debug Device
Class Descriptor as given by the Device Class Specification for Debug, [USB01].
e TCP and UDP over Internet Protocols
e For details of the Gigabit Debug adaptors for Internet Protocol (IP) sockets, consult the
document: MIPI Alliance Specification for Gigabit Debug for Internet Protocol Sockets,
[MIPI08]. This specification is available to MIPI members and to the public through the MIPI
website. The public version of the specification can be found at: http://resources.mipi.org/mipi-
gigabit-debug-for-ips-download.

Other functional networks will be addressed in future Gigabit Debug Specifications.
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8.2 Debug for I3C

8.2.1 Overview

The Debug for I3C Specification describes methods for using the Improved Inter Integrated Circuit (I3C) as
a minimal-pin interface to transport debug controls and data between a DTS and a TS. Current debug
solutions, such as JTAG [IEEEQ1] and Arm® Serial Wire Debug [ARM01], are statically structured which
leads to limited scalability regarding the accessibility of debug components/devices. Also, when looking at
the new requirements of near future technologies, such as 5G, and environments/markets, such as IoT, there
are gaps that need to be addressed. The Debug for I3C Specification targets these gaps and shortcomings by
using the capabilities of I3C to handle debug connectivity on buses that are dedicated for debug or shared
with functional transfers, handling the debug network topology in a dynamic fashion.

The Debug for I3C Specification is designed in accordance with either v1.0 or greater of the MIPI
Specification for I3C [MIPII3], or v1.0 or greater of the I3C Basic Specification [MIPI14].
Implementations can be used with I3C interfaces that implement either specifications. The Debug for 13C
Specification relies on the multi-controlling and multi-drop capabilities of the I3C Specification. The
Debug for I3C Specification uses the existing common command codes (CCC) as defined by /MIPI13] as
well as defining debug-specific CCC to handle debug communication and trace messaging. In-band
interrupts (IBI) are also used and debug-specific Mandatory Data Byte (MDB) values are defined as a
method of debug event and other communications initiated by the TS.

The Debug for I3C Specification allows for different designs where the I3C bus could be shared with non-
debug communication. Whether the 13C bus is shared or dedicated for debug, the specification also allows
for different DTS access points and allows for an externally connected DTS. The ability for an I3C bus to
have multiple Controller-capable devices allows the DTS to be connected as either the Primary Controller
(usually with dedicated debug I3C buses) or as a Secondary Controller (usually with shared I3C buses).
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8.2.2 Relationship to MIPI Debug Architecture

Figure 36 shows the standard MIPI debug architecture highlighting the functional areas addressed by the
Debug for 13C Specification.
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Figure 36 Debug for I3C in the MIPI Debug Architecture

8.2.3 Target System Implementation Overview

The Debug for 13C Specification allows for variations of adaptors for the different debug protocols. This
specification maps the following protocols:

¢ SneakPeek: Used for debug communication with a SneakPeek Command Engine (TinySPP).

o TWP: Used for output of trace formatted using Trace Wrapper Protocol.

e STP: Used for output of trace formatted using System Trace Protocol.

o Simplified Address-Mapped (SAM): Simple address-mapped access to TS resources.

e UART: Virtual UART for character-oriented communication, €.g., scanf () and printf(),ora

GDB debug monitor.

o ImpDef: Implementation-Defined communication protocol.
The primary function of these adaptors (referred to as a Network Adaptor) is facilitating the transport of
data between debug application layer entities at opposite ends of an 13C bus. The Network Adaptor maps
data objects that have meaning at the debug application layer to transport mechanisms provided by an 13C
bus. The Network Adaptor takes data from a debug application layer function and passes it to an 13C

protocol stack, or vice versa. This mapping preserves the relevant properties of the application data. A
Network Adaptor also provides control functions connected with system setup, initialization, and operation.
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Figure 37 shows how the Debug for I3C Specification complements the specific MIPI debug protocol
specifications with Applications and Debug Protocols above it, and 13C transport networks below it.
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Figure 37 Debug for I3C Functional Block Diagram

Figure 38 shows an example Target System. This figure shows the standard I3C Target behavior (colored
yellow), the global debug functions (colored red), four Network Adaptors (colored purple), and the
accompanying debug functions (colored green for functions that are typically hardware and blue for those
that are typically software).

The Network Adaptors in this system are:
e Index 0 is a SneakPeek Protocol (SPP) Network Adaptor transporting bytes formatted as
Command and Response Packets for a Command Engine using the TinySPP style.
e Index 2 is a System Trace Protocol (STP) Network Adaptor transporting data from an STM which
contains trace produced by a SyS-T client.
o Index 4 is a Simplified Address-Mapped (SAM) Network Adaptor transporting bytes formatted as
Commands and Responses for a Debug Engine using the SAM Protocol.
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e Index 5 is a Trace Wrapper Protocol (TWP) Network Adaptor transporting trace data from two
trace sources that has been combined into a single stream using TWP.

e Index 14 is a UART Network Adaptor carrying character streams to and from scanf () and
printf () functions in an application program.
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For details of the MIPI Debug for I3C, consult the document: MIPI Alliance Specification for Debug for
I3C, [MIPI12]. This specification is available to MIPI members and to the public through the MIPI
website. The public version of the specification can be found at: https://resources.mipi.org/mipi-debug-i3c-
download.
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