An Introduction to MIPI I3C® v1.1 and What’s Next
What is MIPI I3C?

- Innovative new 2-Wire interface for sensing and beyond
- Key features address historical pain points
 - In-band Interrupt, Dynamic Addressing, Multi-Master, Standardized Commands, Time Control, Hot-Join, Error Detection and Recovery
 - Plus...

I2C Compatibility

Low Power

High Data Rates

Host Controller
 May be SDR-Only

I3C Main Master

Out-of-Band Interrupt

I3C Bus (SDA & SCL)

Legacy I2C Device(s)

I2C Slave

I3C Device(s)
 May be SDR-Only

I3C Secondary Master

I3C Smart Device(s) / Hub(s) / Engine(s)
 May be SDR-Only

Energy Consumption

mW/MBps per megabit for I3C Data Modes (1000fF)

Assumptions:
1. All symbols in each mode have equal probability for use.
2. Energy consumption is the energy delivered by pull-up devices to the bus (which includes drivers and receivers).
MIPI I3C for Ubiquitous Low Speed Interfacing

- Anywhere sensors are used, MIPI I3C belongs
- Aimed toward historical I²C, SPI and UART applications in...
MIPI I3C Vision

- Too Many I/Os!
- Fragmented Interfaces!

IC Compatibility
- In-band Interrupt
- Common Command Codes
- Reduced Signal Count
- Reduced Interface Power
Current Status

- MIPI I3C v1.0 and MIPI I3C Basic v1.0 Specifications are released
- Interoperability confirmed via multiple MIPI sponsored plugfests
- Master and Slave IP available from all major providers
- Test/Analysis equipment available
- Standardized Host Controller Interface (MIPI I3C HCISM v1.0)
- Linux Kernel support for I3C subsystem
- 5G Ready
- MIPI I3C v1.1 is Sensor WG approved and in formal review process!
Why Adopt MIPI I3C v1.1?

- More clearly written document
- Higher speeds through new HDR mode and multi-lane (Effective Bit Rates in Mbps)
- Configurable, pattern-based Slave Reset
- Grouped Addressing, Device to Device(s) Tunneling, Comprehensive Multi-Mastership...
I3C Basic vs I3C v1.0 vs I3C v1.1 (1/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>I3C Basic</th>
<th>I3C v1.0</th>
<th>I3C v1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 MHz SDR (Master w/Stall, Slave and Legacy I²C Slave Compatibility)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0V Operation for 100pf C_{load}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slave Reset</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Set Static Address as Dynamic Address CCC (SETAASA)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.2V-3.3V Operation for 50pf C_{load}</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>In-band Interrupt (w/MDB)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dynamic Address Assignment</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Error Detection and Recovery</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common Command Codes (Required / Optional)</td>
<td>Yes / No</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Secondary Master</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hot-Join Mechanism</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>I3C Basic</td>
<td>I3C v1.0</td>
<td>I3C v1.1</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Synchronous Timing Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Timing Control (Modes 0-3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-DDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-TSL/TSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-BT (Multi-lane Bulk Transport)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grouped Addressing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device to Device(s) Tunneling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-lane for Speed (Dual/Quad for SDR and HDR-DDR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring Device Early Termination</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Looking Ahead at Capabilities...

• **Beyond the Mobile Industry**
 – Internet of Things (IoT)
 – High Performance Compute / Servers
 – Automotive

• **For Usages Beyond Sensing**
 – As part of its Charter, the Sensor WG carries the responsibility to ensure MIPI I3C “maintains a relevant feature set and scope”
 – The following notable usages, among others, have been instrumental in evolving I3C forward:
 • MIPI Camera Control Interface (CCI™)
 • MIPI Touch over I3C
 • MIPI Debug for I3C
 • System Manageability
What is Next for MIPI I3C?

- Sensor WG ramping up discussion on the next evolution of MIPI I3C
- Considering multiple capabilities / improvements
 - Long reach
 - Specification development improvements
 - Automotive requirements
 - Speed increases
 - New multi-lane uses
 - New PHY approaches
 - Standardized connectors
 - Feature refinements
- Reaching out to Industry partners and forming liaisons
- Join us now to ensure that MIPI I3C evolves to meet the needs of new industries and usages!
ADDITIONAL RESOURCES

• MIPI Sensor WG
 – https://www.mipi.org/groups/sensor

• MIPI I3C Spec
 – https://www.mipi.org/specifications/i3c-sensor-specification

• Whitepaper: Introduction to the MIPI I3C Standardized Sensor Interface
 – http://resources.mipi.org/i3c-sensor-specification-whitepaper-from-mipi-alliance

• MIPI I3C Frequently Asked Questions
 – https://www.mipi.org/resources/I3C-frequently-asked-questions
Any Questions?