Raj Kumar Nagpal, R&D Manager
Synopsys

Enabling Higher Data Rates and Variety of Channels with MIPI D-PHY℠
Agenda

• Design motivation
• MIPI D-PHY evolution
• Summary of MIPI D-PHY specification
• MIPI channel evolution
• Channel modeling results in ADS
• Specification run through for D-PHY v2.1
• MIPI D-PHY 3.0 approved roadmap

Synopsys
Design Motivation

- Higher data rate
- Adaptation to newer technologies
- Longer channel length, channel evolution
- Backward compatible
- Reliable with sufficient margins
- Augmenting existing eco system
- Meeting camera and display present and future needs
- Growing market applications and segments
- The de-facto standard for camera and display
- Target automotive segment for ADAS applications

Synopsys
MIPI D-PHY Evolution

- D-PHY 1.0 1.0 Gbps
- D-PHY 1.1 1.5 Gbps
- D-PHY 1.2 2.5 Gbps
- D-PHY 2.0/2.1 4.5 Gbps
- D-PHY 3.0 10-14 Gbps

Higher data rate enables high pixel count cameras and displays
Basic PHY Architecture

APPI = Abstraced PHY-Protocol Interface (complete PHY, all lanes)
PPI = PHY Protocol Interface (per lane, some signals can be shared with multiple lanes)

© 2017 MIPI Alliance, Inc.
Lane Module
<table>
<thead>
<tr>
<th>Spec Parameters</th>
<th>D-PHY 3.0</th>
<th>D-PHY 2.0/2.1</th>
<th>D-PHY 1.2</th>
<th>D-PHY 1.1</th>
<th>D-PHY 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>10-14 Gbps</td>
<td>4.5Gbps</td>
<td>2.5Gbps</td>
<td>1.5Gbps</td>
<td>1Gbps</td>
</tr>
<tr>
<td>HS Tx Differential Voltage</td>
<td>140-270mV</td>
<td>140-270mV</td>
<td>140-270mV</td>
<td>140-270mV</td>
<td>140-270mV</td>
</tr>
<tr>
<td>HS Tx Single Ended Output Impedance</td>
<td>40-62.5ohms</td>
<td>40-62.5ohms</td>
<td>40-62.5ohms</td>
<td>40-62.5ohms</td>
<td>40-62.5ohms</td>
</tr>
<tr>
<td>HS Tx Common Mode Static Voltage</td>
<td>150-250mV</td>
<td>150-250mV</td>
<td>150-250mV</td>
<td>150-250mV</td>
<td>150-250mV</td>
</tr>
<tr>
<td>HS Tx Rise/Fall Times (20-80%)</td>
<td>TBD</td>
<td>30-100ps(4.5Gbps)</td>
<td>50ps-0.4UI</td>
<td>100ps-0.35UI</td>
<td>100ps-0.3UI</td>
</tr>
<tr>
<td>Tx Cpad Target (Driven by return loss in the spec)</td>
<td>TBD</td>
<td>3pF</td>
<td>3.3pF</td>
<td>3pF</td>
<td>3pF</td>
</tr>
<tr>
<td>HS Tx De-emphasis</td>
<td>TBD</td>
<td>-3.5dB(+/-1dB)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Spread Spectrum Clocking</td>
<td>ModulationRate30-33KHz SSC Deviation5000PPM Down Spread</td>
<td>ModulationRate30-33KHz SSC Deviation5000PPM Down Spread</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Scrambling</td>
<td>Yes Need to be supported by the Controller</td>
<td>Yes Need to be supported by the Controller</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Spec Parameters</td>
<td>D-PHY 3.0 (In progress)</td>
<td>D-PHY 2.0</td>
<td>D-PHY 1.2</td>
<td>D-PHY 1.1</td>
<td>D-PHY 1.0</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>HS Tx Timing</td>
<td>TBD</td>
<td>TJ0.3UI DJ0.2UI RJ0.1UI All Jitter relative to clock Static Skew Clock to Data0.2 to 0.2UI</td>
<td>TJ0.3UI All Jitter relative to clock Static Skew Clock to Data0.2 to 0.2UI</td>
<td>Data to Clock Skew~0.2 to 0.2UI</td>
<td>Data to Clock Skew~0.15 to 0.15UI</td>
</tr>
<tr>
<td>HS Tx AC CM Noise</td>
<td>15mVrms(>450MHz) 25mVpk-pk(50-450MHz)</td>
<td>15mVrms(>450MHz) 25mVpk-pk(50-450MHz)</td>
<td>Same as DPHY2.0</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>BER</td>
<td>1e-12</td>
<td>1e-12</td>
<td>1e-12</td>
<td>1e-12</td>
<td>1e-12</td>
</tr>
<tr>
<td>LP Tx Output High Level</td>
<td>TBD</td>
<td>0.95-1.05</td>
<td>0.95 to 1.3V</td>
<td>1.1-1.3</td>
<td>1.1-1.3V</td>
</tr>
<tr>
<td>LP Tx Min Slew Rate</td>
<td>TBD</td>
<td>25mV/ns</td>
<td>25mV/ns</td>
<td>30mV/ns</td>
<td>30mV/ns</td>
</tr>
<tr>
<td>LP Tx Max Slew Rate</td>
<td>TBD</td>
<td>500mV/ns(0pF Load) 300mV/ns(5pF Load) 250mV/ns(20pF Load) 150mV/ns(70pF Load)</td>
<td>Same as DPHY2.0</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Channel Loss</td>
<td>MPHY Spec Channel2 (7-14inch)</td>
<td>MPHY Spec Channel2 (7-14inch)</td>
<td>MPHY Spec Channel2 (7-14inch)</td>
<td>DPHY Spec Channel (5-11inch)</td>
<td>DPHY Spec Channel (5-11inch)</td>
</tr>
<tr>
<td>Channel ISI</td>
<td>TBD</td>
<td>0.2UI</td>
<td>0.2UI</td>
<td>+/-0.1UI</td>
<td>+/-0.2UI</td>
</tr>
<tr>
<td>Channel Clk to Data Statix Skew</td>
<td>TBD</td>
<td>+/-0.1UI</td>
<td>+/-0.1UI</td>
<td>None(Included in Channel ISI)</td>
<td>None(Included in Channel ISI)</td>
</tr>
<tr>
<td>Spec Parameters</td>
<td>D- PHY 3.0</td>
<td>D- PHY 2.0</td>
<td>D- PHY 1.2</td>
<td>D- PHY 1.1</td>
<td>D- PHY 1.0</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HS Rx Deskew</td>
<td>Internal Clock to Data using Tx Calibration Pattern</td>
<td>Internal Clock to Data using Tx Calibration Pattern</td>
<td>Internal Clock to Data using Tx Calibration Pattern</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>HS Rx Differential Input Threshold</td>
<td>TBD</td>
<td>+40mV to -40mV</td>
<td>+40mV to -40mV</td>
<td>+70mV to -70mV</td>
<td>+70mV to -70mV</td>
</tr>
<tr>
<td>HS Rx Common Mode DC</td>
<td>TBD</td>
<td>70-330mV</td>
<td>70-330mV</td>
<td>70-330mV</td>
<td>70-330mV</td>
</tr>
<tr>
<td>HS Rx Differential Input Impedance</td>
<td>80-125ohms</td>
<td>80-125ohms</td>
<td>80-125ohms</td>
<td>80-125ohms</td>
<td>80-125ohms</td>
</tr>
<tr>
<td>HS Rx Common Mode Noise Tolerance</td>
<td>TBD</td>
<td>100mV(pk-pk)</td>
<td>100mV(pk-pk)</td>
<td>200mV(pk-pk)</td>
<td>200mV(pk-pk)</td>
</tr>
<tr>
<td>HS Rx Jitter Tolerance</td>
<td>TBD</td>
<td>Tjtol0.5UI DJ0.4UI RJ~0.1UI</td>
<td>Tjtol~0.5UI</td>
<td>No Independent Jitter Spec</td>
<td>No Independent Jitter Spec</td>
</tr>
<tr>
<td>HS Rx Skew Tolerance</td>
<td>TBC</td>
<td>Static Skew of +/-0.3UI between Clock and data</td>
<td>Static Skew of +/-0.3UI between Clock and data</td>
<td>Setup/Hold~0.2UI</td>
<td>Setup/Hold~0.15UI</td>
</tr>
<tr>
<td>HS Rx Common Mode Voltage DC</td>
<td>TBD</td>
<td>70-330mV</td>
<td>70-330mV</td>
<td>70-330mV</td>
<td>70-330mV</td>
</tr>
<tr>
<td>HS Rx Common Mode Termination</td>
<td>TBD</td>
<td>14pF-60pF</td>
<td>14pF-60pF</td>
<td>2-60pF</td>
<td>2-60pF</td>
</tr>
<tr>
<td>Spec Parameters</td>
<td>D-PHY 3.0</td>
<td>D-PHY 2.0</td>
<td>D-PHY 1.2</td>
<td>D-PHY 1.1</td>
<td>D-PHY 1.0</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LP Rx Min Input Voltage</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>740mV</td>
<td>740mV</td>
<td>880mV</td>
<td>880mV</td>
</tr>
<tr>
<td>LP Rx Min Pulse Width</td>
<td>TBD</td>
<td>20ns</td>
<td>20ns</td>
<td>20ns</td>
<td>20ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI Data Bus Width</td>
<td>TBD</td>
<td>8/16/32 bit</td>
<td>8bit</td>
<td>8bit</td>
<td>8bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG Channel Support for Displays</td>
<td>Yes WIP Plan to support higher channel loss for displays.</td>
<td>Yes WIP Plan to support higher channel loss for displays.</td>
<td>None</td>
<td>Not Known</td>
<td>-</td>
</tr>
</tbody>
</table>

Synopsys
Tx+ Short Channel+ Termination (Tx Eye Diagram)

- **Hex Eye Width ~ 0.16UI**
- **Eye Width ~ 0.54UI**

Parameters:
- **Transmit Swing:** +140 to -140mV
- **Tx Impedance:** 62.5 ohms
- **Tx Deemp:** None
- **Tx Cpin:** 3pF

Diagram Details:
- **Rx Diff**
- **Rx_Diff1**
- **Exclude Load:** no
- **Enable CTLE:** no
- **EnableFFE:** no
- **EnableDFE:** no

Specifications:
- **Input Rate:** 4.5 Gbps
- **VH:** 0.36 V
- **VL:** -0.36 V
- **C2:** 3.0 pF
- **Rise Fall:** 1.0 ps
- **Mode:** Maximal Length LFSR
- **Exclude Load:** no
- **EQ Mode:** Specific de-emphasis
Tx+ SpecChannel + Termination

- **Eye Height**: ~86mV
- **Eye Width**: ~0.577UI

Transmit Swing: +140 to -140mV
Tx Impedance: ~62.5ohms
Tx Deemp: None
Tx Cpin: ~3pF

Eye Height: ~88mV
Eye Width: ~0.576UI

Synopsys
Tx + SpecChannel + Termination (9Gbps)

- **Data Rate = 9 Gbps**
- **Pattern PRBS9**
- **Tx de-emphasis = 7dB**
- **Tx output impedance 125 ohm**
- **Cpad = 1.5 pf**
- **Channel Reference 2**
- **Rx termination 80 ohm.**
- **Rx equalization CTLE adaptable**
- **Zero1 = 840 Mhz**
- **Pole 1 =1.048 Ghz**
- **Pole 2 = 9.586 Ghz**
- **DC_gain 1.98776**
- **Rx DFE Adaptive 2 tap**

Synopsys
Overall Leoni Channel Performance

Equations:

\[
\text{Eqn } \text{dphy12}_x = [1.25e9, 1.25e9, 2.5e9, 2.5e9, 3.75e9, 3.75e9, 9.2e9, 2.5e9, 1.25e9] \\
\text{Eqn } \text{dphy12}_y = [-3.25e9, -4.25e9, -8.6e9, -8.6e9, -5.9e9, -5.9e9] \\
\text{Eqn } \text{dphy2}_\text{final}_\text{short} = [-1.1, -1.9, -5.4, -4.3, -1.1] \\
\text{Eqn } \text{dphy2}_\text{final}_\text{standard} = [-3.25e9, -4.25e9, -12.5, -11.1, -3.25e9] \\
\text{Eqn } \text{dphy2}_\text{final}_\text{long} = [-5.7, -6.7, -20.8, -19.2, -5.7] \\
\text{Eqn } \text{dphy2}_\text{final}_\text{x} = [1.25e9, 1.25e9, 5.0e9, 5.0e9, 1.25e9]
\]
Rosenberger RG174
Rosenberger RG5811

RG5811 Channels

- Rosenberger 5 meter
- MIPI Short Channel
- Rosenberger 10 meter
- Rosenberger 15 meter
- MIPI Reference Channel
- MIPI Long Channel

freq. GHz
Rosenberger RTK031

Rosenberger 5 meter
MIPI Short Channel
Rosenberger 10 meter
MIPI Reference Channel
Rosenberger 15 meter
MIPI Long Channel
Fakra Connector Modeling

- TDR performance:
 - ADS generated equivalent models
 - S-parameter model/TDR profile

Source Keysight Technologies

Synopsys
Modes of operation
Summary

- MIPI D-PHY
 - Is the de-facto standard for camera and display connectivity
 - Operates at 4.5 Gbps over multiple lanes
 - Enables SoCs for emerging applications: automotive infotainment and advanced driver assistance systems (ADAS), allowing higher data transmission over longer channels
 - Provides flexibility, speed, power and cost benefits
 - Uses low-latency transitions between high-speed and low-power modes with high noise immunity and high jitter tolerance

Synopsys
MIPI D-PHY 3.0

• Data rate 10 to 14 Gbps
• Support for automotive grade PHY requirements with long channels
• Transitions to embedded clock above a defined data rates
• Remains backward compatible to MIPI D-PHY 2.1
Synopsys® DesignWare® MIPI IP Portfolio