Lalan Mishra
Principal Engineer
Qualcomm Technologies, Inc.

Satwant Singh
Sr. Director
Lattice Semiconductor

MIPI VGISM for Sideband GPIO and Messaging Consolidation on Mobile System
Agenda

• The Problem Statement
• Virtual GPIO Interface (MIPI VGISM) : Concept
• MIPI VGISM Architecture
• Application Scenarios
• Summary
• Q&A
Mobile Connectivity Expansion Trends

Cellular
- 2G/3G/4G ➔ LTE-Advanced ➔ 5G

WiFi
- 802.11a/b/g/n/ac ➔ ax
- 802.11ad/WiGig

Video
- VGA/SD/HD ➔ 4K ➔ 8K

Docking
- Charging/audio/video ➔
 Productivity, Games and External Storage

Mobile Influenced
- Drones, IoT, Automotive, ….
- CAT-1 to CAT-3 Low-Power LTE Modem Support
The Problem of Sideband Proliferation
The Problem of Sideband Proliferation

Typical Sideband Utilization

<table>
<thead>
<tr>
<th>Domain</th>
<th>Number of Sideband I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera/Imaging</td>
<td>6 to 12</td>
</tr>
<tr>
<td>Audio CODEC</td>
<td>4 to 7</td>
</tr>
<tr>
<td>Cellular Modem</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Wireless LAN Modem</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Bridge Chip</td>
<td>3 to 8</td>
</tr>
<tr>
<td>Sensor Hub</td>
<td>4 to 18</td>
</tr>
</tbody>
</table>

Typical Sideband GPIOs: 23 to 65
MIPI VGISM: Solution to Sideband Proliferation
MIPI VGISM: The Concept

- MIPI VGI consolidates \(N \)-sideband GPIOs and sub-100 MHz serial messaging over 2 or 3 wire interface in a Point-to-Point configuration
- 2-wire MIPI VGI: Asynchronous, Full-Duplex (4-Mbps max.)
- 3-wire MIPI VGI: Synchronous, Full-Duplex
- MIPI VGI Rev-1 (3-wire) Max Speed: 76.8 MHz

✓ Consolidates Low Speed Messaging Interface and Sideband GPIOs (\(N \)-pins to 2/3-pins reduction)
Limitation of Conventional Techniques

- HLOS processing latency varies widely
- Deep-sleep to active-state typical latency: Typically \(\rightarrow 30 \) to 100-mS
- Timing uncertainty not suitable for the key IPC side-band signaling
MIPI VGISM Architectural Block-Diagram
MIPI VGISM Physical Interface: 2-wire or 3-wire

1. Asynchronous MIPI VGI
 - Initial and Power State Transition mode communication over 2-wire, 4-Mbps max.

2. Synchronous MIPI VGI
 - Common clock (Up to 76.8 MHz in VGI Rev-1)
 - Sleep clock based operation supported in Low Power Modes
MIPI VGISM Techniques At-a-Glance

VGI-Techniques

E.g. Power-ON/Default mode Communication RO-PWM

3-Wire I/F

Device #1

Device #2

CLK

Tx/Rx

Rx/Tx

Synchronous Mode

2-Wire I/F

Device #1

Device #2

Tx/Rx

Rx/Tx

Ro-PWM**

UART

Std. – PWM

PM – PWM **

Asynchronous Modes

* Ring Oscillator based PWM, ** Phase-Modulated PWM
MIPI VGISM Roadmap

<table>
<thead>
<tr>
<th>#</th>
<th>VGI Features</th>
<th>VGI v1.0</th>
<th>VGI Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-wire and 3-wire I/F support</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Default PWM encoding</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>UART Encoding</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>PM-PWM Encoding (Phase-Modulated PWM)</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>2-wire mode max throughput</td>
<td>4 Mbps</td>
<td>8 Mbps (PM-PWM)</td>
</tr>
<tr>
<td>6</td>
<td>3-wire mode max throughput</td>
<td>76.8 Mbps</td>
<td>153.6 Mbps</td>
</tr>
<tr>
<td>7</td>
<td>1.2V, 1.8V Operation support</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>1-wire mode support</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>
MIPI VGISM Init Sequence

- Host VGI module gets initialized with the preset number of GPIOs.
- Host’s Tx o/p level is set to LOW
- Host’s Rx is ready for input level read
 - Input = LOW => Slave not ready
 - Input = HIGH => Slave ready

- Is Slave VGI ready?

 - Yes
 - Host sends enumeration-initiation packet
 - Slave responds

 - No

Further Communication as needed
From this point onwards
Synchronous 3-Wire MIPI VGISM

Shift register includes buffering option to allow GPIO changes during ongoing transmission. Buffer depth is predefined.

GPIO state Transmission starts when current state does not match with past state.

Tx on Neg-Edge

Rx on Pos-Edge

GPIO state is updated at the end of the full frame reception. Frame reception is tracked using the common clock ticks.
Asynchronous 2-wire MIPI VGISM: UART Mode

Illustration#1: 8-bit frame

Illustration#2: 12-bit frame

Illustration#2: 16-bit frame
Asynchronous 2-wire MIPI VGI℠: UART Mode

H/W Flow Control over Tx/Rx eliminates RTS/CTS physical pins
Asynchronous MIPI VGISM: Phase-Modulated PWM

Symbols to signal mapping for a joint (PWM+Phase) modulation scheme

Example representation of an arbitrary data-sequence "10011101"

Link throughput and power: A comparative look

Highlights:
- All Digital Solution
- 2x Throughput
- Time-domain data compression
- Link power Reduction by 50%
MIPI VGISM Protocol

<table>
<thead>
<tr>
<th>Start-bit</th>
<th>Fn_Bit-0</th>
<th>Fn_Bit-1</th>
<th>GPIO/Msg Bit-0</th>
<th>GPIO/Msg Bit-1</th>
<th>GPIO/Msg Bit-2</th>
<th>...</th>
<th>GPIO/Msg Bit-(n-1)</th>
<th>GPIO/Msg Bit-n</th>
<th>Stop-bit</th>
</tr>
</thead>
</table>

Type_Bit
- 1 => vGPIO
- 0 => Message

<table>
<thead>
<tr>
<th>Function_Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>Following bits are vGPIO states</td>
</tr>
<tr>
<td>0 1</td>
<td>Following bits are message bits.</td>
</tr>
<tr>
<td>1 0</td>
<td>Following bit-stream represent the vGPIO stream length to be set on the receiver side.</td>
</tr>
<tr>
<td>1 1</td>
<td>Following bit-stream represent the new vGPIO stream length acknowledgement w.r.t the previously received stream-length programming command.</td>
</tr>
</tbody>
</table>

NOTE: The mechanism has a fixed overhead of two-bits over the base-line vGPIO implementation.
MIPI VGISM FSM Integration with MIPI I3CSM

- VGI FSM could be integrated with a serial interface of choice, such as MIPI I3C(SM)
- I3C(SM) supports MIPI VGI integration through dedicated Common Command codes (CCC) support in I3C(SM) v1.0
- Helps reduce Hardware event pins at system level
MIPI VGISM FSM Integration with MIPI I3CSM

- HW Event sideband signals are eliminated.
- VGI-FSM (Finite State Machine) performs I3CSM message encoding/decoding for HW events and thus frees up the associated CPU on the host-SoC for these tasks.
- Impact is reduced Latency and Power consumption.
Comparing MIPI VGISM

- **SPI**
 - Master-Slave approach
 - Custom implementations, no common methods

- **MIPI I3C(SM)**
 - Multi-Master Multi-Slave, Open-Drain approach
 - In-band interrupts

- **MIPI RFFE(SM)**
 - Master-Multi Multi-Slave approach

- **UART**
 - Custom implementations, requires reference clocks

- **MIPI VGI(SM)**
 - Symmetric control approach (No Master No Slave)
 - Initialization from either side
Comparing MIPI VGISM - Clocking

- **UART**
 - Requires Reference Clock with Agreed rates
- **SPI, MIPI I3C^(SM), MIPI RFFE^(SM)**
 - Clock is forwarded from Master to Slave
- **MIPI VGI^(SM)**
 - Using RO-PWM PHY option, the clocking is forwarded with data
 - Only Transmitter requires clock to create telegrams
 - Receiver captures telegrams without internal clock
 - Useful for devices which power down
 - Useful for very simple write-only devices (LED bank)
Phased MIPI VGISM Adoption – Leveraging Smaller FPGAs

Full VGI Adoption
- Device A (e.g., Host) ↔ Device B (e.g., Peripheral)
- VGI Sideband (SB) / GPIOs + Messaging
- Native VGI Interface

Partial VGI Adoption
- Device A ↔ Device B
- VGI ↔ Small FPGA SB / GPIOs
- FPGA VGI Bridging: Case-1

Partial VGI Adoption
- Device A ↔ Device B
- SB / GPIOs ↔ VGI ↔ Small FPGA
- FPGA VGI Bridging: Case-2

No VGI Adoption
- Device A ↔ Device B
- SB / GPIOs ↔ VGI ↔ Small FPGA
- Across connectors, cables, hinges or pogo-pins etc.
- FPGA VGI Bridging: Case-3

© 2017 MIPI Alliance, Inc.
Summary

- Sideband GPIOs add to SoC and PCB level cost and complexity
- MIPI VGI consolidates sideband GPIOs and Low-Speed serial messaging interface in P2P configuration to reduce I/O pins
- Both 2 and 3-wire interface options are available
- Common PWM start-up mode ensures interoperability
- The VGI FSM can be combined with any other interface bus of choice, e.g. I3C(SM) VGI
- The MIPI VGI Specification is to be released in 2018
mipi
DEVCON
THANK YOU
BANGALORE, INDIA
MIPI.ORG/DEVCON
2017
MIPI ALLIANCE DEVELOPERS CONFERENCE
mipi®
DEVCON

THANK YOU

2017
MIPI ALLIANCE
DEVELOPERS
CONFERENCE

HSINCHU CITY, TAIWAN

MIPI.ORG/DEVCON