Agenda

- Problem Statement
- General Solution
- MIPI UniPro PHY Test Mode
- Proposed Solution
Problem Statement

• It’s often challenging to do MIPI PHY® test, due to the lack of a standardized, widely adopted test mode
• Specs contain “Recommended Test Functionality“ as annex, but informative
 – It still requires the user to implement a dll for a test automation software to control the DUT and to perform the tests
 – It also requires out-of-band DUT control capabilities
• Loopback is widely used, but some features can’t be tested with standard equipment (e.g. MIPI M-PHY PWM), and manual reconfiguration is needed between tests
• Manufacturers’ validation teams need to invest time (and $$) to prepare for testing
• Certification workshops (e.g. UFSA) become increasingly complicated

BitifEye Digital Test Solutions GmbH
General Solution

- A Test Mode defined in the protocol layer simplifies testing
- Requirements:
 - In-band configuration of the DUT for each test must be possible
 - DUT must remain in test mode until explicitly disabled
 - DUT must implement counters and it must be possible to retrieve them in-band
UniPro PHY Test Mode

• Mandatory
• Enter test mode through PACP_TEST_MODE_req frame
• Allows lane distribution setting (single- and multi-lane test possible)
• Configure transmission mode and speed
• RX test:
 – Implements Frame and Error counters
 – Counters can be retrieved in-band through TX
• TX test:
 – The DUT can be configured to transmit a CRPAT pattern for testing with the oscilloscope
Proposed Solution

- Use the UniPro Test Mode to test the Physical Layer
- Train DUT into each required test mode
- Poll DUT frame and error counters
- UniPro counters are global, can test all lanes simultaneously to save time
- Everything must be done in-line, no sideband connection needed
- Must require little or no customization
Proposed Solution

• Hardware:
 – Oscilloscope for TX test and calibration of the RX test setup
 – High speed data generator for test pattern generation for RX test
 – Protocol generator and analyzer for device configuration and frame and error counter reception
Proposed Solution

- Debug Software:
 - Individual adjustment of each PHY parameter (timings, levels, jitter)
 - Test script wizard for automated generation of configuration pattern for each gear and mode
 - Ability to control DUT configuration flow
 - Poll and decode frame and error counters from DUT

BitifEye Digital Test Solutions GmbH
Proposed Solution

- Test Automation Software:
 - Automated calibration of stress signal
 - Automated DUT configuration for each CTS test
 - Automated testing for each CTS item
 - Test report generation

BitifEye Digital Test Solutions GmbH
Proposed Solution

• Use Case RX test
 – DUT Data0 RX is connected to switch that can alternate between test pattern generator and protocol generator
 – DUT Data1-3 RX connected directly to test pattern generator
 – DUT Data 0 TX connected to protocol analyzer
 – DUT RST_n also controlled to alternate test modes

• Test Flow
 – Automation connects protocol generator to DUT
 – Hardware Reset sent to RST_n of DUT
 – Protocol generator sends link configuration pattern to DUT
 – Automation connects test pattern generator to DUT
 – Test pattern generator sends test pattern to DUT, interleaving Frame and Error counter requests
 – DUT responds, protocol analyzer captures response and test automation decodes it
 – Test goes on until DUT reports errors or target BER is achieved
Proposed Solution

- **Use Case TX test**
 - DUT Data0 RX is connected protocol generator
 - DUT TX Lane under test is connected to oscilloscope
 - DUT RST_n also controlled to alternate test modes

- **Test Flow**
 - Protocol generator sends Hardware Reset to DUT
 - Protocol generator sends link configuration pattern to DUT
 - Automation controls oscilloscope TX Test software to run selected tests

BitifEye Digital Test Solutions GmbH
BitifEye & Keysight Solution

• Live demo in our booth!
Questions?

BitifEye Digital Test Solutions GmbH
mipi DEVCON
THANK YOU

HSINCHU CITY, TAIWAN

MIPI.ORG/DEVCON
BACKUP