IO Aggregation/De-Aggregation in Mobile & Mobile Influenced Systems to Improve Routing Congestion
Agenda

• Mobile & mobile-influenced system evolution
 – Low-speed I/O proliferation and MIPI standardization efforts

• System-level challenges
 – Bus topologies (I^2C, SPI, MIPI-I3C, MIPI-VGI, etc.)
 – Routing congestions

• Reducing wires
 – Aggregation / De-aggregation

• Summary
Mobile-Influenced: Multiple Modules
Multiple Control Busses and GPIOs – Low Speed Communications

Congested Inter-Modular Connectivity

Lattice Semiconductor
MIPI VGISM: GPIO Consolidation

But, over time, it will add yet another bus to the mix

Lattice Semiconductor
Agenda

• Mobile & mobile-influenced system evolution
 – Low-speed I/O proliferation and MIPI standardization efforts

• System-level challenges
 – Bus topologies (I²C, SPI, MIPI-I3C, MIPI-VGI, etc.)
 – Routing congestions

• Reducing wires
 – Aggregation / De-aggregation

• Summary
Challenge: Different Protocols and Bandwidths

- **SPI**: 4 pin IF 10+ Mbps
- **I2C**: 2 pin IF @ 400KHz, 2 pin IF @ 100KHz, 2 pin IF @ 1000KHz
- **UART**: 2 pin IF
- **MIPI CSI2 CCI**: I2C like
- **MIPI I3C**: 2 pin IF @ 12.5MHz
- **GPIO**: Various
- **PDM**: 2 pin IF
- **MIPI SoundWire**: 2 pin IF
- **I2S**: 2 pin IF

Lattice Semiconductor
System Architecture Trends: Routing Limitations

POGO Pin architecture

Module A

Module B

Lattice Semiconductor

FlexPCB architecture

Board A

Board B

1-2 layer
Issues Identified

• SOCs are minimizing the number of direct signal connections
• PCBs are becoming smaller which adds to routing complexity
• Signals need to be pre-conditioned prior to reaching the SOC
• Localized or pre-processing demands are increasing
Agenda

- Mobile & mobile-influenced system evolution
 - Low-speed I/O proliferation and MIPI standardization efforts

- System-level challenges
 - Bus topologies (I²C, SPI, MIPI-I3C, MIPI-VGI, etc.)
 - Routing congestions

- Reducing wires
 - Aggregation / De-aggregation

- Summary
Signal Aggregation / De-Aggregation

Low power
Low cost
Small size

FPGA #1

Module or Board A

- SPMI
- SoundWire®
- SPI
- SoundWireXL
- I2C
- UART
- DSI
- GPIO
- SLVS
- CSI-2
- I3C
- I2S
- PDM
- RFFE
- SlimBus
- SMBus/PMBus
- GPIO

FPGA #2

Module or Board B

- SPMI
- SoundWire®
- SPI
- SoundWireXL
- I2C
- UART
- DSI
- GPIO
- SLVS
- CSI-2
- I3C
- I2S
- PDM
- RFFE
- SlimBus
- SMBus/PMBus
- GPIO

POGO Pins
Or
Flex Cable
Signal Aggregation / De-Aggregation

FPGA #1
Low power
Low cost
Small size

FPGA #2
Low power
Low cost
Small size

Module or Board A
~1-5 mW
~2x2 mm²

Module or Board B

POGO Pins
Or
Flex Cable

SPMI
SoundWire
SPI
SoundWireXL
I2C
UART
DSI
GPIO
SLVS
CSI-2
I3C
I2S
PDM
RFFE
SlimBus
SMBus/PMBus
GPIO

SLVS
CSI-2
I3C
I2S
PDM
RFFE
SlimBus
SMBus/PMBus
GPIO

Low power
Low cost
Small size

© 2017 MIPI Alliance, Inc.
How Does Aggregation in an FPGA Work?

50 Mbps Serialized Envelope

Time Division Multiplexing – Multiple Packets

Lattice Semiconductor
How Does Aggregation in an FPGA Work?

Packetized data across serialized interface

- Serialized CDR interface for easier board routing
- Signals transmitted via a packet-based structure
 - Improved data integrity (CRC, FEC, etc.), 8b/10b enc
- Transmitted using a clock tolerance compensation (CTC)
 - Allows difference in reference clocks on each end
- Buffered / conditioned prior to reaching SOC
- Pre-processed for always-on capability
- Bridged to an interface the SOC can understand (i.e., SPI, I3C)

Lattice Semiconductor
Resources Used

<table>
<thead>
<tr>
<th>Block</th>
<th>Gates*</th>
<th>Registers</th>
<th>RAMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR Encoding</td>
<td>3,000</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>RX Protocol Logic</td>
<td>1,400</td>
<td>105</td>
<td>-</td>
</tr>
<tr>
<td>TX Protocol Logic</td>
<td>4,300</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>GPIO interface</td>
<td>300</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>I2C Local Slave interface</td>
<td>2,000</td>
<td>165</td>
<td>-</td>
</tr>
<tr>
<td>I2S interface</td>
<td>5,600</td>
<td>725</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>100</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16K</td>
<td>1.4K</td>
<td>4</td>
</tr>
</tbody>
</table>

* For ASIC gates ~ 10 x # of LUTs used. One RAM = 4Kb. One PLL also used.

TX Device

<table>
<thead>
<tr>
<th>Gates*</th>
<th>Registers</th>
<th>RAMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>1,400</td>
<td>105</td>
<td>-</td>
</tr>
<tr>
<td>4,300</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2,000</td>
<td>165</td>
<td>-</td>
</tr>
<tr>
<td>5,600</td>
<td>725</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>16K</td>
<td>1.4K</td>
<td>4</td>
</tr>
</tbody>
</table>

RX Device

<table>
<thead>
<tr>
<th>Gates*</th>
<th>Registers</th>
<th>RAMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>1,400</td>
<td>105</td>
<td>-</td>
</tr>
<tr>
<td>4,300</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2,000</td>
<td>165</td>
<td>-</td>
</tr>
<tr>
<td>5,000</td>
<td>265</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>20K</td>
<td>1.4K</td>
<td>4</td>
</tr>
</tbody>
</table>

This has been implemented in a pair of 2K LUT FPGAs.
Summary

• Trend towards modular systems
 – Notebooks, phones, drones, automotive, etc.

• Systems have a fair amount of low-speed signals
 – Control busses, GPIOs, LEDs, etc.
 – Routing congestions

• Signal aggregation/de-aggregation improves industrial design
 – Reduces connections

• Low power, small size FPGAs offer custom implementations

Lattice Semiconductor