M-PHY Gear 4 Test Challenges

Very hard to debug interoperability issues at this moment

- No Gear 4 protocol analyzer available (schedule available at end of 2017)
- Hard to measure or probe 12Gbps signal quality in embedded or even a UFS card connector
- Tx/Rx Instruments cost are very high
- Signal quality uncertain after CTLE+DFE equalizer circuit
- Due to these issues, need to try and error when system is not working. Schedule impact
In Order to Understand Receiver Quality - 1

Solution 1: **Eye Open**

Pro: 1) Know if Rx sees data stable window

2) Easier to implement circuit

Con: No idea about signal quality information

Case A

Case B

Case C
Solution 2: **Eye Monitor ON THE FLY**

Pro:
1) Detailed information about signal quality available
2) Is there reflection? Too much loss or too much compensation
3) User can provide eye monitor for debugging

Con: More complicated circuit design

Guess Case A or B?
Eye Open vs Eye Monitor

Too Much Compensation

Need More Compensation

Nice One!

Case A

Case B

Case C
And More.... Getting Best Cal Setting in Embedded System

With Eye Monitor function + post processing algorithms, each chip is able to select the best eye monitor result in the specific embedded system as its default parameter.
<table>
<thead>
<tr>
<th>Operation Timing</th>
<th>Signal Quality Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø Take fewer seconds for the detailed eye</td>
<td>Ø Great signal quality information</td>
</tr>
<tr>
<td>Ø Adjustable scan timing setting</td>
<td>Ø Good for debugging</td>
</tr>
<tr>
<td>Ø Fast</td>
<td>Ø See data stable window only</td>
</tr>
<tr>
<td>Ø Possible done within Gear 4 ADAPT package (EQ tuning)</td>
<td></td>
</tr>
</tbody>
</table>
How Eye Open/Monitor Works for UFS Debugging

UFS Host
- Host sends **VU CMD1** to enter eye test mode
- Host sends normal Write / Read command
- Host sends **VU CMD2** to exit eye test mode
- Host reads eye data & generate eye graph

UFS Device
- Device enables eye test mode
- Device collecting eye data
- Device responses eye profile data

Data Transfer

Receive Eye Data

MIPI M-Phy Interface
Best Eye Result for Embedded UFS Platform

Eye Open
- Fast operating timing
- Apply during ADAPT

Eye Monitor
- Good signal quality information
- Extract best setting during eUFS shipping

Post-Optimize
- Select the best eye monitor result in specific embedded system

Best Interoperability

Best eye for eUFS platform
Phison Gear 4 Performance

- Power consumption: < 5mW /Lane/Gbps (28nm)

- Support HS-MODE Gear4(A/B) with data rate up to 11.6 Gbps and backward compatible

- Support for 2-lane M-TX and 2-lane M-RX

- Supports LS-MODE PWM-G1 to PWM-G4 with data rate up to 72 Mbps

- Supports Type-I MODULE state machine for HS and LS mode

- RMMI M-RX/TX-DATA interface 40 bit for protocol layer data interface
G4B Tx Eye Results

Near End Eye
G4B 11.648Gbps Rx Compliance Margin Results

MPHY_2.45_Beta18

> 130 mUI Margin
PS8313 UFS Storage
- eUFS 2.1, Gear 3, 2 Lanes
- 256GB 3D Nand Flash/LDPC
- Max. R 920MB/s; W 550MB/s

M-PHY Gear4 IP
- Compliant with M-PHY 4.1
- Receiver Eye open feature (Test Mode)
- 11.6 Gbps, 2 Lanes

UFS Host Board
- USB 3.0 Device
- Support UFS 2.1 Gear3, 2 Lanes
- Built-in Data Pattern Generator

NAND Flash-based IC Design
Over 15 years of NAND Flash Controller Experience
- 1100+ flash related Patents, Internal Phy, ASIC, and Advanced NAND Handling Technologies

System Integration
- Broad Application Expertise
 - from Embedded, Enterprise to PC & Mobile
 - from PATA, SATA, NVMe PCIe, USB, SD, eMMC to UFS

On Display at Booth: Visit Us!