MIPI® Physical Layer and Protocol Testing Solutions
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
MIPI Standards Overview
Example of Mobile Device

MIPI Physical-layer standards are:
D-PHY, M-PHY, SlimBus, DigRF 3G

MIPI Protocol-layer standards are:
CSI, DSI, DigRF 3G, DigRF 4G
MIPI Standards Overview
Example Mobile Device Block Diagram

MIPI Specific Standards

- **Display Unit**
 - DSI
 - Display Driver IC
 - DSI

- **CMOS Image Sensor**
 - CSI
 - Camera Driver IC
 - CSI

- **Audio Driver IC**
 - SLIMbus

- **Loudspeaker**
- **Ear Piece**
- **FM Radio**
- **Microphone**

Baseband IC
- Apps Processor
- HSI
- Tx/Rx Processor

RF IC
- DigRF
- RF Interface (WCDMA, GSM, WLAN, FM, Bluetooth, GPS, MobileTV, etc)

Memory Interfaces
- Memory (Internal)
- Memory (SD Card)
 - (ex. Mobile DDR, Mobile SDRAM, Flash, etc)

Air Interfaces
- (ex. WiMax)

Definitions
- CSI = Camera Serial Interface
- DSI = Display Serial Interface
- SLIMbus = Serial Low-power Inter-chip Media Bus

Oscilloscope Fundamentals - © 2011 Tektronix
Tektronix Confidential
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
Tek Strategic Involvement with MIPI Alliance & UNH-IOL

- Tektronix is a **Contributor Member** of the MIPI Alliance
- Tektronix is actively-participating in several MIPI Working Groups
- Tektronix has a close working relationship with UNH-IOL.

Combined Tek Press-Release with UNH & MIPI Alliance in Sept-2010:

- http://www2.tek.com/cmswpt/prdetails.lotr%3Fct%3DPR%26cs%3DNews%2BRelease%26ci%3D17639%26lc%3DEN&urlhash=HZu6

- “…….Tektronix is spurring the adoption of D-PHY and M-PHY specifications. Tektronix is aiding the adoption of the new M-PHY interface by giving designers the testing tools they need to ensure signal integrity and verify performance of increasingly complex designs.”
 - **Joel Huloux, Chairman of the MIPI Alliance.**

- “Tektronix has been supportive of UNH-IOL's collaborative efforts……,”
 - **Andy Baldman, Senior technical staff, R&D, UNH-IOL.**
Tek Tools are listed on MIPI Alliance Webpage and CTS

MIPI Alliance, Inc. does not endorse companies or their products. No liability can be accepted by MIPI Alliance, Inc., its directors, employees or any loss occasioned to any person or entity acting or failing to act as a result of anything contained in or omitted from the content of this material.
Tek MIPI setup used by UNH-IOL

Through a collaborative agreement with Tektronix, the UNH-IOL is using the Tektronix DSA72004B Digital Serial Analyzer for MIPI testing. Combined with UNH-IOL’s D-PHYGUI software, this platform provides the ability to capture and analyze D-PHY signalling, in order to perform the UNH-IOL D-PHY Transmitter Physical Layer Conformance Test Suite.

For more information on the Tektronix DSA72004B please visit http://www.tek.com

The Moving Pixel Company P331 MIPI D-PHY Probe is used to implement many protocol layer tests for both CSI-2 and DSI for up to 4 lanes.

UNH-IOL (University of New Hampshire) is a 3rd party test house for MIPI testing
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
What is D-PHY?

- It’s a PHY standard for interfacing Camera (CSI) & Display (DSI)
- Two modes of transmission
 - High Speed (HS) and Low Power (LP)
- Modes are mixed during the operation
 - Transitions from LP to HS and back to LP on the fly
- Maximum Data Rate
 - High Speed mode: 80 Mbps – 1.5 Gbps, Typically at ~500 Mbps.
 - Low Power mode: Up to 10 Mbps
- Bus termination
 - 50 ohms in HS
 - Hi-Z in LP
D-PHY Testing Challenges

- Logo testing is not required, but Optional.
 - MIPI is Chip-to-Chip/ Chip-to-Peripheral interface, similar to a DDR bus.
 - Mobile Phones do not need compliance logo, unlike USB/SATA devices.

- No two MIPI devices are the same
 - Variable Data Rates
 - Up to 4 lanes of Data traffic,
 - Multiple different data formats
 - Specification enables custom limits.

- Characterization is significantly important
 - Mobile OEMs select the suppliers based on characterization reports.

Test Equipment & Setups need to be Very Flexible
D-PHY Tx : Opt.D-PHYTX Conformance Test Solution

 - TekExpress option for Fully-Automated testing
 - Provides Conformance and Characterization Testing
 - Based on D-PHY Base Spec v1.0 and UNH’s Conformance Test Suite v0.98.
 - Runs on 7K/C and 70K/B/C scopes

- **Opt.TEKEXP is Pre-Requisite**

- **Differentiation**
 - **Un-parallel Automation**
 - Using Automatic cursor finding of Test Regions
 - **100% Widest Test Coverage**
 - For Conformance testing to Latest CTS (v0.98)
 - Based on Latest Base spec (v1.0)
 - Fully-Automated Temperature Chamber testing

- **Value proposition**
 - Custom-limits/ Limits-Editing on the fly
 - Test Reports
 - Pass/Fail Summary with Margin details & Zoom-in waveform captures
 - Tek 3.5GHz scope is the minimal configuration for accurate testing
D-PHY Tx : Opt.D-PHYTX Conformance Test Solution Features & Benefits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| Unparallel-Automated Testing | • Performs Single-button Fully-Automated testing for set of Transmitter measurements
 | • Enables designers to test devices faster |
| Comprehensive Tests coverage | • 100% Coverage
 | • 49 out of 49 total CTS tests |
| Fully-Automated Temperature Chamber testing | • Validate All High Speed tests using differential probes, Socket XL cables, High-Temperature Tips and Standard Filter Files. |
| Clock Continuous mode | • Allows selective tests run in Clock Continuous mode |
| Escape mode | • Allows to perform ULPS &Normal Mode tests |
| Characterization/ Margin Testing | • Allows custom-limits or limits-editing to perform Margin testing.
 | • Performs characterization of your design. |
| Detailed Test-Reports | • Provides Pass/Fail summary table, margin details on each test, and waveform screenshot of the testing region for each test. |
D-PHY Tx : Opt.D-PHY Debug and Analysis Solution

 - DPOJET option for Setup Library & MOI
 - Provides **Debug Analysis and Characterization Testing**
 - Based on D-PHY Base Spec v0.9 and UNH’s Conformance Test Suite v0.08.
 - Runs on 7K/C and 70K/B/C scopes

- **Opt.DJA is Pre-Requisite**

- **Differentiation**
 - Flexible for Debug Analysis & Characterization
 - Breadth of Tests Coverage

- **Value proposition**
 - DPOJET Detailed Test Reports
 - DPOJET Scalable for early start on M-PHY (Next Generation Standard)
 - Tek 3.5GHz scope is the minimal configuration for accurate testing
D-PHY Tx : Recommended Test Setup

www.tek.com/applications/computing/serial/recommended_equipment.html#mipi

- **Scope**
 - Recommend: DPO7354/C or DPO/DSA/MSO70404/B/C or higher for risetime accuracies.

- **Probes**
 - For 7Ks: 4x TAPxx/ P6245/ P6249, or 3x TDP3500
 - For 70Ks: 4x P7240 or 3x P73xx with 020-3035-00 tips/ 3x P75xx.

- **Scope Software**
 - Opt.D-PHYTX on TEKEXP For Conformance Test
 - Opt.D-PHY on DPOJET for Debug, Analysis & Characterization
Tek D-PHY TX and UNH-IOL DPHYGUI Results Correlations

<table>
<thead>
<tr>
<th>Measurement name</th>
<th>Tek Result</th>
<th>UNH Result</th>
<th>Deviation in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dp</td>
<td>Dn</td>
<td>Unit</td>
</tr>
<tr>
<td>Data Lane LP-TX Thevenin Output High Level Voltage (VOH)</td>
<td>1.212</td>
<td>1.209 V</td>
<td>1.212</td>
</tr>
<tr>
<td>Data Lane LP-TX Thevenin Output Low Level Voltage (VOL)</td>
<td>0.024</td>
<td>0.021 V</td>
<td>0.024</td>
</tr>
<tr>
<td>Data Lane Rise Time</td>
<td>24.35</td>
<td>23.89 ns</td>
<td>28.06</td>
</tr>
<tr>
<td>Data Lane Fall Time</td>
<td>14</td>
<td>13.52 ns</td>
<td>13.97</td>
</tr>
<tr>
<td>Clock Lane LP-TX Thevenin Output High Level Voltage (VOH)</td>
<td>1.191</td>
<td>1.209 V</td>
<td>1.191</td>
</tr>
<tr>
<td>Clock Lane LP-TX Thevenin Output Low Level Voltage (VOL)</td>
<td>0.009</td>
<td>0.045 V</td>
<td>0.219</td>
</tr>
<tr>
<td>Clock Lane Rise Time</td>
<td>22.92</td>
<td>22.2 ns</td>
<td>22.83</td>
</tr>
<tr>
<td>Clock Lane Fall Time</td>
<td>14.2</td>
<td>10.68 ns</td>
<td>14.42</td>
</tr>
<tr>
<td>Data Lane HS Entry: Data Lane TLPX Value</td>
<td>70.08 V</td>
<td>70.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Data Lane HS Entry: THS-PREPARE Value</td>
<td>72.32 V</td>
<td>72.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>Data Lane HS Entry: THS-PREPARE + THS-ZERO Value</td>
<td>178.88 ns</td>
<td>178.97</td>
<td>0.0</td>
</tr>
<tr>
<td>Data Lane HS-TX Differential Voltages (V_{DIFF}, V_{OVD})</td>
<td>-211.8</td>
<td>217.2 mV</td>
<td>-214.8</td>
</tr>
<tr>
<td>Clock Lane HS-TX Differential Voltage Mismatch (\Delta V_{DIFF})</td>
<td>5.6 mV</td>
<td>3.5</td>
<td>37.3</td>
</tr>
<tr>
<td>Clock Lane HS-TX Single Ended Output High Voltages (V_{OH}, V_{OH</td>
<td>Z})</td>
<td>455.45 mV</td>
<td>475.47</td>
</tr>
<tr>
<td>Clock Lane HS-TX Common-Mode Voltages (V_{CM}, V_{CM})</td>
<td>395.96</td>
<td>306.78 mV</td>
<td>305.2</td>
</tr>
<tr>
<td>Clock Lane HS-TX Common-Mode Voltage Mismatch (\Delta V_{CM})</td>
<td>0.408 mV</td>
<td>0.7</td>
<td>-71.6</td>
</tr>
<tr>
<td>Clock Lane HS-TX Dynamic Common-Level Variations Between 50-</td>
<td>13.59 mVPK</td>
<td>14.3</td>
<td>-5.2</td>
</tr>
<tr>
<td>Clock Lane HS-TX Dynamic Common-Level Variations Above 450MHz</td>
<td>7 mVrms</td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>Clock Lane HS-TX 20%-80% Rise time (\tau)</td>
<td>223.6 ns</td>
<td>223.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Clock Lane HS-TX 80%-20% Fall time (\tau)</td>
<td>229.5 ns</td>
<td>229.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Clock Lane HS Exit T_{TR</td>
<td>I} Value</td>
<td>82.45 ns</td>
<td>82.34</td>
</tr>
<tr>
<td>Clock Lane HS Exit 30%-80% Post-EOT Rise Time(T_{R</td>
<td>I</td>
<td>T}) Value</td>
<td>17.04 ns</td>
</tr>
<tr>
<td>Clock Lane HS Entry: T_{PEX} Value</td>
<td>71.28 ns</td>
<td>71.25</td>
<td>0.0</td>
</tr>
<tr>
<td>Clock Lane HS Entry: T_{CM</td>
<td>PREPARE} Value</td>
<td>51.9 ns</td>
<td>50.26</td>
</tr>
<tr>
<td>Clock Lane HS Entry: T_{CM</td>
<td>PREPARE} + T_{ZERO} Value</td>
<td>294.56 ns</td>
<td>293.81</td>
</tr>
<tr>
<td>Clock Lane HS-TX Differential Voltages (V_{DIFF}, V_{OVD})</td>
<td>-188.31</td>
<td>136.39 mV</td>
<td>-184.7</td>
</tr>
<tr>
<td>Clock Lane HS-TX Differential Voltage Mismatch (\Delta V_{DIFF})</td>
<td>51.33 mV</td>
<td>58.2</td>
<td>-13.4</td>
</tr>
<tr>
<td>Clock Lane HS-TX Single Ended Output High Voltages (V_{OH}, V_{OH</td>
<td>Z})</td>
<td>447</td>
<td>471.1</td>
</tr>
<tr>
<td>Clock Lane HS-TX Common-Mode Voltages (V_{CM</td>
<td>I}, V_{CM</td>
<td>O})</td>
<td>314.08</td>
</tr>
<tr>
<td>Clock Lane HS-TX Common-Mode Voltage Mismatch (\Delta V_{CM})</td>
<td>1.61 mV</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Clock Lane HS-TX Dynamic Common-Level Variations Between 50-</td>
<td>17.3 mVPK</td>
<td>12.2</td>
<td>29.5</td>
</tr>
<tr>
<td>Clock Lane HS-TX Dynamic Common-Level Variations Above 450MHz</td>
<td>7.46 mVrms</td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Clock Lane HS-TX 20%-80% Rise time (\tau)</td>
<td>277.3 ns</td>
<td>263.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Clock Lane HS-TX 80%-20% Fall time (\tau)</td>
<td>275.39 ns</td>
<td>258.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Clock Lane HS Exit T_{TR</td>
<td>I} Value</td>
<td>693.87 ns</td>
<td>52.97</td>
</tr>
<tr>
<td>Clock Lane HS Exit 30%-80% Post-EOT Rise Time(T_{R</td>
<td>I</td>
<td>T}) Value</td>
<td>17 ns</td>
</tr>
<tr>
<td>Clock Lane HS Clock Instantaneous (UI_{MAX})</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>1.134</td>
<td>1.38</td>
<td>NA</td>
<td>1.356</td>
</tr>
<tr>
<td>Mean</td>
<td>1.265</td>
<td>Mean</td>
<td>1.25</td>
</tr>
<tr>
<td>HS Entry T_{CM</td>
<td>PREPARE} Value</td>
<td>67.28 ns</td>
<td>69.3</td>
</tr>
<tr>
<td>HS Exit T_{CM</td>
<td>PREPARE} Value</td>
<td>10361.52 ns</td>
<td>10297.77</td>
</tr>
</tbody>
</table>

Setup: MSO 20GHz scope, 4x P6248 probes, Termination board and probing board from UNH.

* As LP HS waveform is used in this use-case, Tek algorithm finds the LP-00 region and computes VOL in that region, whereas the UNH algorithm considers the LP-00 and HS region for computing VOL. If LP signal is used, the same measurement has 100% correlation.
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
DSI/CSI Decode (New)
Probe using Analog, Digital or Mixed Channels
DSI/CSI Decode (New)
Mix of Analog and Digital Channels

- Analog Clock, Digital Data
- Digital Clock, Analog Data

- Flexible, high performance MSO channels allow simultaneous probing of DSI and CSI buses
- Working on multi-lane solution, MSO70k is the only product on the market that could do this
DSI/CSI Decode (New)

Errors indicated in bus decode waveform

- Missing Sync
- Checksum Error
- ECC error

Errors and Warnings indicated in event table
DSI/CSI Decode (New)
Zoom on a row of pixels

- Decoded items:
 - Start of Transmission (SoT)
 - Data Type - Packed Pixel 888
 - Virtual Channel-0, Word Count-60
 - ECC – 07h
 - 1st Pixel Value: Red – 255, Green – 216, Blue – 000
 - All of the pixel values as you scroll
 - Checksum field
 - End of Transmission D-PHY fields
DSI/CSI Decode (New)

Event Table

- Event table lists,
 - Timestamps for each event
 - Short / Long packet indication
 - Data Type, Virtual Channel, Packet Data, Word Count, ECC and Checksum all decoded
 - Number of pixels
 - Error/Warning column indicates problems (this demo signal doesn’t have any)
 - All the data in this long packet is now shown with each pixel labeled and the R, G, and B values for each pixel shown
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
D-PHY Rx : Test Solution Overview

- 100% Complete solution for D-PHY Compliance testing
 - Meets all the requirements in UNH-IOL document (v0.98)
 - PG3A is only 4 channel solution available

- System set up is quick and easy
 - No complex VXI system, just stand alone instruments, a probe and a coupler

- Cost effective solution
 - Approx 66% lower list price than competition

- No extra equipment required for protocol testing
 - PG3A is only 4 channel solution for complete CSI and DSI protocol testing

- PG3A Pattern Generator provides
 - Controls clock and signaling to establish link with DUT
 - Adjusts voltage levels, packet type, etc to stress test receiver

- AWG7082C Arbitrary Waveform Generator
 - Adds jitter and interference to the D-PHY signals

Diagram:

- PG3A Pattern Generator
 - Controls clock and signaling
 - Adjusts voltage levels, etc

- AWG7082C Arbitrary Waveform Generator
 - Adds jitter and interference

- D-PHY Coupler
 - Connects PG3A and AWG7082C to DUT

- P332 Probe
 - Connects to PG3A for testing
D-PHY Rx: Recommended Test Setup

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG3ACAB*</td>
<td>Pattern Generator</td>
<td>Moving Pixel</td>
</tr>
<tr>
<td>P332*</td>
<td>4 Lane - 1Gb/s Serial Probe for PG3A</td>
<td>Moving Pixel</td>
</tr>
<tr>
<td>PGRemote Software*</td>
<td>Push-button GUI for Creation of D-PHY, CSI2 and DSI signals</td>
<td>Moving Pixel</td>
</tr>
<tr>
<td>AWG7082C</td>
<td>8GS/s, 2 Channel AWG</td>
<td>Tektronix</td>
</tr>
<tr>
<td>D-PHY Coupler</td>
<td>Impedance Matched Couplers for PG3A and AWG7082C</td>
<td>Moving Pixel</td>
</tr>
</tbody>
</table>

* These products are available to purchase directly from Tektronix
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
What is M-PHY?

- M-PHY is a flexible architecture that allows the implementer to support high data rates at minimal power, cost & I/O redesign, for applications such as High Definition Video.

- A Fast, Scalable, Serial Communications Architecture
 - Link – Connects M-PHY Transmitter to an M-PHY Receiver
 - Sub-link – Manage one or more lanes
 - Lane – Operation defined in the protocol (DSI, CSI, UniPro, DigRF)
M-PHY Family

source: www.synopsys.com
M-PHY Testing Challenges

<table>
<thead>
<tr>
<th>Signaling Mode</th>
<th>Speed</th>
<th>Level (V)</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHY-PWM</td>
<td>576Mbps</td>
<td>500e-3/250e-3</td>
<td>10k/50 ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260e-3/130e-3</td>
<td></td>
</tr>
<tr>
<td>MPHY-SYS</td>
<td>576Mbps</td>
<td>500e-3/250e-3</td>
<td>10k/50 ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260e-3/130e-3</td>
<td></td>
</tr>
<tr>
<td>MPHY-HS</td>
<td>5.83Gbps</td>
<td>250e-3/130e-3</td>
<td>50 ohms</td>
</tr>
</tbody>
</table>

- Higher data rate will increase importance of Signal Integrity of links
 - Acquisition capability of oscilloscope will need to increase
 - More emphasis on timing/jitter and noise (signal integrity)
 - Receiver testing will be needed to stress-test resulting BER

- Termination
 - Two types of terminations - Restive terminated, and not Terminated.
 - LS mode can operate either terminated or not terminated
 - HS mode it is always terminated, so the swing are halved.
Tektronix M-PHY Testing Solution

- Tektronix is **Industry 1st** tools for M-PHY measurements & Decode
 - Announced in September 2010, during MIPI Conference in Athens
- Tek is only tools available today for M-PHY Measurements & Decode
- PSD (Power Spectral Density) measurements are uniquely supported

Press Release

Tektronix Introduces Industry’s First Test Tools for MIPI M-PHY Debug and Validation

Monday, September 27, 2010

Support for New High-Speed M-PHY Specification Includes DPOJET toolset, and M-PHY DigRFv4 Decode for Tektronix Oscilloscopes

BEAVERTON, OR—(Marketwire - 09/27/10) - Tektronix, Inc., the world’s leading manufacturer of oscilloscopes, today introduced the industry’s first testing tools for the MIPI Alliance M-PHY standard, allowing customers to immediately get started with performance verification and debug for this important new specification using Tektronix DPOJET® and DigRF®v4 Series oscilloscopes.

The announcement was made in conjunction with the MIPI Alliance All-Members meeting taking place this week in Athens, Greece. The M-PHY specification is an essential part of the MIPI Alliance’s vision for more efficient high-speed interfaces on mobile devices. Compared to the current D-PHY specification, M-PHY supports faster chip-to-chip connections while addressing EMI and power dissipation concerns. By moving quickly to offer M-PHY testing tools, Tektronix is stepping up to help ensure rapid delivery of next-generation mobile devices incorporating M-PHY at the physical layer.

As an active MIPI contributor, Tektronix brings its test and measurement knowledge to the organization, spurring the adoption of D-PHY and M-PHY specifications, said Joel Hubaux, chairman of the MIPI Alliance. “Tektronix is aiding the adoption of the new M-PHY interface by giving designers the testing tools they need to ensure signal integrity and verify performance of increasingly complex designs.”

Based on the newly ratified MIPI Alliance M-PHY specification, the new Tektronix M-PHY test offering includes a setup library for the popular DPOJET® RF analysis software and methods of implementation (MOSI) developed in close cooperation with UNISYS®. The solution also includes pre- and post-decoding support from Tektronix partner, The Moving Fuel Company, as well as M-PHY DigRF®v4 decode and verification.
New M-PHYTX : M-PHY Automated Testing Solution
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
M-PHY Rx: Jitter Tolerance Test Solution

- **PWM** (Pulse-Width Modulation) signaling is Uniquely supported by AWGs today for all gears
- **Single-AWG** unit supports both MIPI M-PHY and USB3.

M-PHY Rx - CTS tests Coverage Available Today

- Differential Input Voltage Amplitude Tolerance (VDIF-RX)
- Receiver Eye Opening and Accumulated Differential Input Voltage (TEYE-RX, VDIF-ACC-RX)
- Common-Mode Input Voltage Tolerance (VCM-RX) 22
- Receiver Jitter Tolerance (TJRX, SJRX, RJRX, STTJRX, STSJRX)
- Receiver Pulse Width Tolerance (TPULSE-RX)
M-PHY Rx : Error Detector Test Solution
BER on scope using Opt.ERRDT

- **8B/10B Data:**
 - Hardware Serial trigger: 1.25 Gb/s to 6.25 Gb/s
 - BER (Opt.ERRDT): Covers all the above data rate range
M-PHY Tx & Rx Recommended Test Setup

www.tek.com/applications/computing/serial/recommended_equipment.html#mipi

- Oscilloscopes
 - DPO70604/B/C for HS-GEAR1
 - DPO70804/B/C or above for GEAR1/2
 - DPO72004/B/C or above for All GEARs

- Probes
 - 2x P73xx/P73xxSMA (up to HS-Gear2),
 or 2x P75xx with P75LRST tip (up to HS-Gear3) for HS.
 - 2x P73xx/P73xxSMA for PWM (All Gears)

- Signal Generators for Rx
 - AWG7122C with Option #6.

- Software
 - New Opt.M-PHYTX based on DPOJET
 - MPHYVIEW, for DigRFv4 Protocol Decode.
 - Opt.SR-810B, for 8b/10b Serial Analysis.
 - Optional: ERRDT Scope Error Detector
 - Optional: SerialXpress Software for AWG.

- Fixtures
 - No Fixtures required as MIPI/ M-PHY is a chip-to-chip interface with live Master-Slave / Receiver-end connected.
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
Stimulus

- **Protocol Testing** – Stimulating buses with known good data packets or packets with intentional errors tests the system’s adherence to a specified protocol.

- **Infrequent Events** - System bugs that only appear when infrequent events occur can be quickly reproduced with a pattern generator by repeatedly stimulating the system with the key external event.

- **Automated Test** – Production line test setups can utilize the PG3A as a general purpose digital I/O source with a large number of channels.
P332 MIPI D-PHY Probe

Key Features

- MIPI D-PHY Probe for use with PG3AMOD and PG3ACAB
- Generate CSI2 and DSI data over D-PHY
- 4-Data Lanes and 1-Clock lane
- 1Gbps (P331) or 1.5Gbps (P332) / Lane data rate
- SMA outputs for each lane
- LP and HS Voltage and Timing adjustable on a each lane separately

Preserve your investment with the ONLY 4 lane, 1.5Gbps stimulus solution in the market.
Stimulus Setup

TLA or PC

PGRemote → PGApp

USB

Inputs Probe

Master Clock

P332

DUT

CSI2 or DSI over D-PHY
PGRemote
Push Button Interface to generate CSI2 / DSI Vectors

PGRemote Main Window

- Command Buttons
- PG, probe status and operational controls
- Status Bar
- Configuration Parameters for PG playback, and D-PHY
- Define CSI/DSI commands and arguments

Oscilloscope Fundamentals - © 2011 Tektronix
PGRemote

- Push Button User interface to generate CSI2 or DSI vectors and probe control
- Real-time adjustment of frequency, voltage and delay in HS and LP modes
- Ability to adjust D-PHY state timing parameters
- Ability to adjust frame timing and generate looping video
- Enter and exit Low power states
- Create custom commands, Macros and assign them to buttons
- Save restore a configuration
- Ability to use P331 as a generic high-speed serial probe
- Demo for free, License required to run with hardware
- The PG can be operated in several modes
 - Pushbutton Mode using the PGRemote software
 - Macro Mode using the PGRemote software
 - Scripting
 - Full remote control mode
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- SLIMbus &H.S.I testing
- DigRF testing
- Summary, Q&A
Requirements of the DigRF Test Bench

- **BBIC**
 - Physical Layer Analysis
 - Stimulus with ideal and non ideal signals
 - Analysis of DigRF protocol and IQ data
 - Analysis DSP and uP

- **RFIC**
 - Physical Layer Analysis
 - Stimulus with ideal and non ideal signals
 - Analysis of DigRF protocol and IQ data
 - RF & Modulation Analysis

- **Integration**
 - Physical Layer Analysis
 - Correlated analysis from DSP to DigRF to RF
Analysis – DigRF Verification & Debug

- No specialized hardware or probing is required

- Minimum impact on signal integrity
 - Simultaneous digital and analog acquisition w/ single probe

- Flexible data extraction for complete analysis
 - Extract IQ data for Modulation Analysis
 - Extract sync, header & payload data

- Customizable S/W, allowing propriety and non compliant DigRF signals to acquired and analyzed

- DigRF solution is available free-of-charge
Analysis – Signal Integrity

- DPOJET Jitter and Timing Analysis Software provide the highest accuracy and lowest noise jitter measurements available.

- Identifies rare anomalies or glitches in seconds with Real-Time DPO acquisition.

- Most complete trigger system in the industry.

- User customizable User Interface.
Analysis - RF

- Live RF spectrum display for transient and spectrum occupancy evaluation
- Trigger on signals other analyzers miss
- Capture and Analyze modulation and frequency switching transients
- 110MHz Real-time BW w/ -73dBc SFDR
- Correlated windows for easy fault identification
Tektronix’ DigRF Solution
Complete solution from Baseband to RF

- Complete solution using industry leading test equipment
 - AWG5000 for Signal Generation
 - TLA7012 for DigRF & Digital Analysis
 - DPO7000 for Signal Integrity issues
 - RTSA for RF and Modulation Analysis

- DigRF Physical Layer & Protocol analysis on logic analyzer without using specialized external hardware
 - Standard probes acquire the signal
 - DigRF Application software processes the data

- Flexibility to generate and analysis ideal, non-ideal and propriety versions of DigRF
 - DigRF Application is customizable by the user
Agenda

- MIPI® Standards Overview
- Tek Strategic Involvement in MIPI
- D-Phy testing
 - Tx, & CSI-DSI Decode
 - Rx
- M-Phy testing
 - Tx, & Decode
 - Rx
- DSI &CSI testing - Stimulus
- DSI &CSI testing - Protocol Validation
- DigRF testing
- SLIMbus &H.S.I testing
- Summary, Q&A
Summary - Tektronix MIPI Solutions
Single scalable-setup for both D-PHY & M-PHY

Optimal MIPI Configuration:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Qty</th>
<th>D-PHY</th>
<th>M-PHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA71254C</td>
<td>12.5 GHz Digital Serial Analyzer; 4 analog channels</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA71254C D-PHY</td>
<td>D-PHY Transmitter Debug & Characterization (requires DJA)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA71254C M-PHY</td>
<td>M-PHY Transmitter Debug & Characterization (requires DJA)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEKEXP</td>
<td>TekExpress Automated Compliance Software</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEKEXP D-PHYTX</td>
<td>D-PHY Automated Solution</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG7122C</td>
<td>Signal Generator</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG7122C 01</td>
<td>Waveform length expansion (32M to 64M points)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG7122C 06</td>
<td>Interleaved high bandwidth output</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG7122C 08</td>
<td>Fast sequence switching (requires export control license)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG3ACAB</td>
<td>Moving Pixel Digital Pattern Generator Cabinet</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7313</td>
<td>DIFFERENTIAL PROBE, 12.5 GHZ</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020-3035-00</td>
<td>SolderIn Tips for P73xx probes for MIPI</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPHYVIEW</td>
<td>M-Phy - Digital RF software</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P331</td>
<td>Moving Pixel - 1Gbs Serial Probe for PG3A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGRremote-CSI/DSI</td>
<td>Moving Pixel - PG3A generation of CSI or DSI signals</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-PHY Coupler Set</td>
<td>AWG / PG3A Coupler Set (Not on Tek price list yet)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDX100</td>
<td>JITTER GENERATION SOFTWARE for AWG7000</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDX100 ISI</td>
<td>S-Parameter and ISI creation option (requires SDX100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDX100 SSC</td>
<td>Spread Spectrum Clock addition option (required SDX100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA71254C ERRDT</td>
<td>Frame and Bit Error Rate Detector (requires ST6G option)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA71254C STG6</td>
<td>Serial Pattern triggering up to 6.25Gb/s</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional References

www.tek.com/applications/computing/serial/recommended_equipment.html#mipi

www.Tek.com/MIPI:
- **D-PHY Datasheet**
- **D-PHY/CSI/DSI Application Note**
- **DigRF Application Note**
- **MIPI Fact Sheet**:
- **Opt. M-PHY MOI**
- **Opt. D-PHY MOI**
- **MPHYVIEW DigRFv4 Decode Datasheet & Manual**
 - http://www.movingpixel.com/MIPI_MPhy.html#MIPI_MVu

Other:
- **MIPI Alliance Video on Tek Solutions**
 - http://www.youtube.com/watch?v=Mf9rvX2YG4&feature=channel
Thank you